Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.GeneticAlgorithm/3.3/GeneticAlgorithmMainLoop.cs @ 5991

Last change on this file since 5991 was 5445, checked in by swagner, 14 years ago

Updated year of copyrights (#1406)

File size: 11.7 KB
RevLine 
[2830]1#region License Information
2/* HeuristicLab
[5445]3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[2830]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[4722]22using HeuristicLab.Common;
[2830]23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Operators;
[3021]26using HeuristicLab.Optimization.Operators;
[2830]27using HeuristicLab.Parameters;
[3000]28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[2830]29using HeuristicLab.Selection;
30
[3196]31namespace HeuristicLab.Algorithms.GeneticAlgorithm {
[2830]32  /// <summary>
[3198]33  /// An operator which represents the main loop of a genetic algorithm.
[2830]34  /// </summary>
[3198]35  [Item("GeneticAlgorithmMainLoop", "An operator which represents the main loop of a genetic algorithm.")]
[3017]36  [StorableClass]
[3198]37  public sealed class GeneticAlgorithmMainLoop : AlgorithmOperator {
[2830]38    #region Parameter properties
39    public ValueLookupParameter<IRandom> RandomParameter {
40      get { return (ValueLookupParameter<IRandom>)Parameters["Random"]; }
41    }
[3048]42    public ValueLookupParameter<BoolValue> MaximizationParameter {
43      get { return (ValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
[2830]44    }
[3659]45    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
46      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
[2830]47    }
[2882]48    public ValueLookupParameter<IOperator> SelectorParameter {
49      get { return (ValueLookupParameter<IOperator>)Parameters["Selector"]; }
[2830]50    }
[2882]51    public ValueLookupParameter<IOperator> CrossoverParameter {
52      get { return (ValueLookupParameter<IOperator>)Parameters["Crossover"]; }
53    }
[3095]54    public ValueLookupParameter<PercentValue> MutationProbabilityParameter {
55      get { return (ValueLookupParameter<PercentValue>)Parameters["MutationProbability"]; }
[2830]56    }
[2882]57    public ValueLookupParameter<IOperator> MutatorParameter {
58      get { return (ValueLookupParameter<IOperator>)Parameters["Mutator"]; }
[2830]59    }
[2882]60    public ValueLookupParameter<IOperator> EvaluatorParameter {
61      get { return (ValueLookupParameter<IOperator>)Parameters["Evaluator"]; }
[2830]62    }
[3048]63    public ValueLookupParameter<IntValue> ElitesParameter {
64      get { return (ValueLookupParameter<IntValue>)Parameters["Elites"]; }
[2830]65    }
[3048]66    public ValueLookupParameter<IntValue> MaximumGenerationsParameter {
67      get { return (ValueLookupParameter<IntValue>)Parameters["MaximumGenerations"]; }
[2830]68    }
[2882]69    public ValueLookupParameter<VariableCollection> ResultsParameter {
70      get { return (ValueLookupParameter<VariableCollection>)Parameters["Results"]; }
71    }
[3616]72    public ValueLookupParameter<IOperator> AnalyzerParameter {
73      get { return (ValueLookupParameter<IOperator>)Parameters["Analyzer"]; }
[3107]74    }
[5346]75    public ValueLookupParameter<IntValue> EvaluatedSolutionsParameter {
76      get { return (ValueLookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
77    }
78    public ValueLookupParameter<IntValue> PopulationSizeParameter {
79      get { return (ValueLookupParameter<IntValue>)Parameters["PopulationSize"]; }
80    }
[2830]81    private ScopeParameter CurrentScopeParameter {
82      get { return (ScopeParameter)Parameters["CurrentScope"]; }
83    }
84
85    public IScope CurrentScope {
86      get { return CurrentScopeParameter.ActualValue; }
87    }
88    #endregion
89
[3080]90    [StorableConstructor]
[4722]91    private GeneticAlgorithmMainLoop(bool deserializing) : base(deserializing) { }
92    private GeneticAlgorithmMainLoop(GeneticAlgorithmMainLoop original, Cloner cloner)
93      : base(original, cloner) {
94    }
95    public override IDeepCloneable Clone(Cloner cloner) {
96      return new GeneticAlgorithmMainLoop(this, cloner);
97    }
[3198]98    public GeneticAlgorithmMainLoop()
[2830]99      : base() {
[3080]100      Initialize();
101    }
102
103    private void Initialize() {
[2830]104      #region Create parameters
105      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
[3048]106      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
[3659]107      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
[2882]108      Parameters.Add(new ValueLookupParameter<IOperator>("Selector", "The operator used to select solutions for reproduction."));
109      Parameters.Add(new ValueLookupParameter<IOperator>("Crossover", "The operator used to cross solutions."));
[3095]110      Parameters.Add(new ValueLookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
[2882]111      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
[5208]112      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
[3048]113      Parameters.Add(new ValueLookupParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation."));
114      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
[2882]115      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
[3616]116      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
[5346]117      Parameters.Add(new ValueLookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
118      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "The size of the population."));
[3198]119      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied."));
[2830]120      #endregion
121
[3080]122      #region Create operators
[2908]123      VariableCreator variableCreator = new VariableCreator();
[3616]124      ResultsCollector resultsCollector1 = new ResultsCollector();
125      Placeholder analyzer1 = new Placeholder();
[2882]126      Placeholder selector = new Placeholder();
[3193]127      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
[2830]128      ChildrenCreator childrenCreator = new ChildrenCreator();
[5208]129      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
[2830]130      Placeholder crossover = new Placeholder();
131      StochasticBranch stochasticBranch = new StochasticBranch();
132      Placeholder mutator = new Placeholder();
[5208]133      SubScopesRemover subScopesRemover = new SubScopesRemover();
134      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
[2830]135      Placeholder evaluator = new Placeholder();
[5352]136      SubScopesCounter subScopesCounter = new SubScopesCounter();
[3193]137      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
[3096]138      BestSelector bestSelector = new BestSelector();
[2830]139      RightReducer rightReducer = new RightReducer();
140      MergingReducer mergingReducer = new MergingReducer();
[5352]141      IntCounter intCounter = new IntCounter();
[2830]142      Comparator comparator = new Comparator();
[3616]143      Placeholder analyzer2 = new Placeholder();
[2830]144      ConditionalBranch conditionalBranch = new ConditionalBranch();
145
[3750]146      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class GeneticAlgorithm expects this to be called Generations
[2908]147
[3616]148      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
149      resultsCollector1.ResultsParameter.ActualName = "Results";
[3080]150
[3616]151      analyzer1.Name = "Analyzer";
152      analyzer1.OperatorParameter.ActualName = "Analyzer";
[3095]153
[2882]154      selector.Name = "Selector";
155      selector.OperatorParameter.ActualName = "Selector";
[2830]156
[3048]157      childrenCreator.ParentsPerChild = new IntValue(2);
[2830]158
[2882]159      crossover.Name = "Crossover";
160      crossover.OperatorParameter.ActualName = "Crossover";
[2830]161
162      stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability";
163      stochasticBranch.RandomParameter.ActualName = "Random";
164
[2882]165      mutator.Name = "Mutator";
166      mutator.OperatorParameter.ActualName = "Mutator";
[2830]167
[5208]168      subScopesRemover.RemoveAllSubScopes = true;
169
170      uniformSubScopesProcessor2.Parallel.Value = true;
171
[2882]172      evaluator.Name = "Evaluator";
173      evaluator.OperatorParameter.ActualName = "Evaluator";
[2830]174
[5352]175      subScopesCounter.Name = "Increment EvaluatedSolutions";
176      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
[5346]177
[3096]178      bestSelector.CopySelected = new BoolValue(false);
179      bestSelector.MaximizationParameter.ActualName = "Maximization";
180      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
181      bestSelector.QualityParameter.ActualName = "Quality";
[2830]182
[5352]183      intCounter.Increment = new IntValue(1);
184      intCounter.ValueParameter.ActualName = "Generations";
[2830]185
[3048]186      comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
[2830]187      comparator.LeftSideParameter.ActualName = "Generations";
188      comparator.ResultParameter.ActualName = "Terminate";
189      comparator.RightSideParameter.ActualName = "MaximumGenerations";
190
[3616]191      analyzer2.Name = "Analyzer";
192      analyzer2.OperatorParameter.ActualName = "Analyzer";
[3095]193
[2830]194      conditionalBranch.ConditionParameter.ActualName = "Terminate";
[3080]195      #endregion
196
197      #region Create operator graph
198      OperatorGraph.InitialOperator = variableCreator;
[3616]199      variableCreator.Successor = resultsCollector1;
200      resultsCollector1.Successor = analyzer1;
201      analyzer1.Successor = selector;
[3193]202      selector.Successor = subScopesProcessor1;
203      subScopesProcessor1.Operators.Add(new EmptyOperator());
204      subScopesProcessor1.Operators.Add(childrenCreator);
205      subScopesProcessor1.Successor = subScopesProcessor2;
[5208]206      childrenCreator.Successor = uniformSubScopesProcessor1;
207      uniformSubScopesProcessor1.Operator = crossover;
208      uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2;
[3080]209      crossover.Successor = stochasticBranch;
210      stochasticBranch.FirstBranch = mutator;
211      stochasticBranch.SecondBranch = null;
[5208]212      stochasticBranch.Successor = subScopesRemover;
[3080]213      mutator.Successor = null;
214      subScopesRemover.Successor = null;
[5208]215      uniformSubScopesProcessor2.Operator = evaluator;
[5352]216      uniformSubScopesProcessor2.Successor = subScopesCounter;
[5208]217      evaluator.Successor = null;
[5352]218      subScopesCounter.Successor = null;
[3193]219      subScopesProcessor2.Operators.Add(bestSelector);
220      subScopesProcessor2.Operators.Add(new EmptyOperator());
221      subScopesProcessor2.Successor = mergingReducer;
[3096]222      bestSelector.Successor = rightReducer;
[3080]223      rightReducer.Successor = null;
[5352]224      mergingReducer.Successor = intCounter;
225      intCounter.Successor = comparator;
[5356]226      comparator.Successor = analyzer2;
[3616]227      analyzer2.Successor = conditionalBranch;
[3096]228      conditionalBranch.FalseBranch = selector;
[2830]229      conditionalBranch.TrueBranch = null;
230      conditionalBranch.Successor = null;
231      #endregion
232    }
[3715]233
234    public override IOperation Apply() {
235      if (CrossoverParameter.ActualValue == null)
236        return null;
237      return base.Apply();
238    }
[2830]239  }
240}
Note: See TracBrowser for help on using the repository browser.