Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.GeneticAlgorithm/3.3/GeneticAlgorithm.cs @ 6345

Last change on this file since 6345 was 6051, checked in by swagner, 14 years ago

Changed some more parameters to be hidden per default and corrected wrong layout in some parameter views (#1377)

File size: 18.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Analysis;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Optimization;
30using HeuristicLab.Optimization.Operators;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.PluginInfrastructure;
34using HeuristicLab.Random;
35
36namespace HeuristicLab.Algorithms.GeneticAlgorithm {
37  /// <summary>
38  /// A genetic algorithm.
39  /// </summary>
40  [Item("Genetic Algorithm", "A genetic algorithm.")]
41  [Creatable("Algorithms")]
42  [StorableClass]
43  public sealed class GeneticAlgorithm : HeuristicOptimizationEngineAlgorithm, IStorableContent {
44    public string Filename { get; set; }
45
46    #region Problem Properties
47    public override Type ProblemType {
48      get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); }
49    }
50    public new ISingleObjectiveHeuristicOptimizationProblem Problem {
51      get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; }
52      set { base.Problem = value; }
53    }
54    #endregion
55
56    #region Parameter Properties
57    private ValueParameter<IntValue> SeedParameter {
58      get { return (ValueParameter<IntValue>)Parameters["Seed"]; }
59    }
60    private ValueParameter<BoolValue> SetSeedRandomlyParameter {
61      get { return (ValueParameter<BoolValue>)Parameters["SetSeedRandomly"]; }
62    }
63    private ValueParameter<IntValue> PopulationSizeParameter {
64      get { return (ValueParameter<IntValue>)Parameters["PopulationSize"]; }
65    }
66    private ConstrainedValueParameter<ISelector> SelectorParameter {
67      get { return (ConstrainedValueParameter<ISelector>)Parameters["Selector"]; }
68    }
69    private ConstrainedValueParameter<ICrossover> CrossoverParameter {
70      get { return (ConstrainedValueParameter<ICrossover>)Parameters["Crossover"]; }
71    }
72    private ValueParameter<PercentValue> MutationProbabilityParameter {
73      get { return (ValueParameter<PercentValue>)Parameters["MutationProbability"]; }
74    }
75    private OptionalConstrainedValueParameter<IManipulator> MutatorParameter {
76      get { return (OptionalConstrainedValueParameter<IManipulator>)Parameters["Mutator"]; }
77    }
78    private ValueParameter<IntValue> ElitesParameter {
79      get { return (ValueParameter<IntValue>)Parameters["Elites"]; }
80    }
81    private ValueParameter<MultiAnalyzer> AnalyzerParameter {
82      get { return (ValueParameter<MultiAnalyzer>)Parameters["Analyzer"]; }
83    }
84    private ValueParameter<IntValue> MaximumGenerationsParameter {
85      get { return (ValueParameter<IntValue>)Parameters["MaximumGenerations"]; }
86    }
87    #endregion
88
89    #region Properties
90    public IntValue Seed {
91      get { return SeedParameter.Value; }
92      set { SeedParameter.Value = value; }
93    }
94    public BoolValue SetSeedRandomly {
95      get { return SetSeedRandomlyParameter.Value; }
96      set { SetSeedRandomlyParameter.Value = value; }
97    }
98    public IntValue PopulationSize {
99      get { return PopulationSizeParameter.Value; }
100      set { PopulationSizeParameter.Value = value; }
101    }
102    public ISelector Selector {
103      get { return SelectorParameter.Value; }
104      set { SelectorParameter.Value = value; }
105    }
106    public ICrossover Crossover {
107      get { return CrossoverParameter.Value; }
108      set { CrossoverParameter.Value = value; }
109    }
110    public PercentValue MutationProbability {
111      get { return MutationProbabilityParameter.Value; }
112      set { MutationProbabilityParameter.Value = value; }
113    }
114    public IManipulator Mutator {
115      get { return MutatorParameter.Value; }
116      set { MutatorParameter.Value = value; }
117    }
118    public IntValue Elites {
119      get { return ElitesParameter.Value; }
120      set { ElitesParameter.Value = value; }
121    }
122    public MultiAnalyzer Analyzer {
123      get { return AnalyzerParameter.Value; }
124      set { AnalyzerParameter.Value = value; }
125    }
126    public IntValue MaximumGenerations {
127      get { return MaximumGenerationsParameter.Value; }
128      set { MaximumGenerationsParameter.Value = value; }
129    }
130    private RandomCreator RandomCreator {
131      get { return (RandomCreator)OperatorGraph.InitialOperator; }
132    }
133    private SolutionsCreator SolutionsCreator {
134      get { return (SolutionsCreator)RandomCreator.Successor; }
135    }
136    private GeneticAlgorithmMainLoop GeneticAlgorithmMainLoop {
137      get { return FindMainLoop(SolutionsCreator.Successor); }
138    }
139    [Storable]
140    private BestAverageWorstQualityAnalyzer qualityAnalyzer;
141    #endregion
142
143    public GeneticAlgorithm()
144      : base() {
145      Parameters.Add(new ValueParameter<IntValue>("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
146      Parameters.Add(new ValueParameter<BoolValue>("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
147      Parameters.Add(new ValueParameter<IntValue>("PopulationSize", "The size of the population of solutions.", new IntValue(100)));
148      Parameters.Add(new ConstrainedValueParameter<ISelector>("Selector", "The operator used to select solutions for reproduction."));
149      Parameters.Add(new ConstrainedValueParameter<ICrossover>("Crossover", "The operator used to cross solutions."));
150      Parameters.Add(new ValueParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution.", new PercentValue(0.05)));
151      Parameters.Add(new OptionalConstrainedValueParameter<IManipulator>("Mutator", "The operator used to mutate solutions."));
152      Parameters.Add(new ValueParameter<IntValue>("Elites", "The numer of elite solutions which are kept in each generation.", new IntValue(1)));
153      Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
154      Parameters.Add(new ValueParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed.", new IntValue(1000)));
155
156      RandomCreator randomCreator = new RandomCreator();
157      SolutionsCreator solutionsCreator = new SolutionsCreator();
158      SubScopesCounter subScopesCounter = new SubScopesCounter();
159      ResultsCollector resultsCollector = new ResultsCollector();
160      GeneticAlgorithmMainLoop mainLoop = new GeneticAlgorithmMainLoop();
161      OperatorGraph.InitialOperator = randomCreator;
162
163      randomCreator.RandomParameter.ActualName = "Random";
164      randomCreator.SeedParameter.ActualName = SeedParameter.Name;
165      randomCreator.SeedParameter.Value = null;
166      randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name;
167      randomCreator.SetSeedRandomlyParameter.Value = null;
168      randomCreator.Successor = solutionsCreator;
169
170      solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name;
171      solutionsCreator.Successor = subScopesCounter;
172
173      subScopesCounter.Name = "Initialize EvaluatedSolutions";
174      subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions";
175      subScopesCounter.Successor = resultsCollector;
176
177      resultsCollector.CollectedValues.Add(new LookupParameter<IntValue>("Evaluated Solutions", null, "EvaluatedSolutions"));
178      resultsCollector.ResultsParameter.ActualName = "Results";
179      resultsCollector.Successor = mainLoop;
180
181      mainLoop.SelectorParameter.ActualName = SelectorParameter.Name;
182      mainLoop.CrossoverParameter.ActualName = CrossoverParameter.Name;
183      mainLoop.ElitesParameter.ActualName = ElitesParameter.Name;
184      mainLoop.MaximumGenerationsParameter.ActualName = MaximumGenerationsParameter.Name;
185      mainLoop.MutatorParameter.ActualName = MutatorParameter.Name;
186      mainLoop.MutationProbabilityParameter.ActualName = MutationProbabilityParameter.Name;
187      mainLoop.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
188      mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
189      mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions";
190      mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name;
191      mainLoop.ResultsParameter.ActualName = "Results";
192
193      foreach (ISelector selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(x => !(x is IMultiObjectiveSelector)).OrderBy(x => x.Name))
194        SelectorParameter.ValidValues.Add(selector);
195      ISelector proportionalSelector = SelectorParameter.ValidValues.FirstOrDefault(x => x.GetType().Name.Equals("ProportionalSelector"));
196      if (proportionalSelector != null) SelectorParameter.Value = proportionalSelector;
197      ParameterizeSelectors();
198
199      qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
200      ParameterizeAnalyzers();
201      UpdateAnalyzers();
202
203      Initialize();
204    }
205    [StorableConstructor]
206    private GeneticAlgorithm(bool deserializing) : base(deserializing) { }
207    [StorableHook(HookType.AfterDeserialization)]
208    private void AfterDeserialization() {
209      Initialize();
210    }
211
212    private GeneticAlgorithm(GeneticAlgorithm original, Cloner cloner)
213      : base(original, cloner) {
214      qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
215      Initialize();
216    }
217    public override IDeepCloneable Clone(Cloner cloner) {
218      return new GeneticAlgorithm(this, cloner);
219    }
220
221    public override void Prepare() {
222      if (Problem != null) base.Prepare();
223    }
224
225    #region Events
226    protected override void OnProblemChanged() {
227      ParameterizeStochasticOperator(Problem.SolutionCreator);
228      ParameterizeStochasticOperator(Problem.Evaluator);
229      foreach (IOperator op in Problem.Operators) ParameterizeStochasticOperator(op);
230      ParameterizeSolutionsCreator();
231      ParameterizeGeneticAlgorithmMainLoop();
232      ParameterizeSelectors();
233      ParameterizeAnalyzers();
234      ParameterizeIterationBasedOperators();
235      UpdateCrossovers();
236      UpdateMutators();
237      UpdateAnalyzers();
238      Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
239      base.OnProblemChanged();
240    }
241
242    protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) {
243      ParameterizeStochasticOperator(Problem.SolutionCreator);
244      ParameterizeSolutionsCreator();
245      base.Problem_SolutionCreatorChanged(sender, e);
246    }
247    protected override void Problem_EvaluatorChanged(object sender, EventArgs e) {
248      ParameterizeStochasticOperator(Problem.Evaluator);
249      ParameterizeSolutionsCreator();
250      ParameterizeGeneticAlgorithmMainLoop();
251      ParameterizeSelectors();
252      ParameterizeAnalyzers();
253      Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
254      base.Problem_EvaluatorChanged(sender, e);
255    }
256    protected override void Problem_OperatorsChanged(object sender, EventArgs e) {
257      foreach (IOperator op in Problem.Operators) ParameterizeStochasticOperator(op);
258      ParameterizeIterationBasedOperators();
259      UpdateCrossovers();
260      UpdateMutators();
261      UpdateAnalyzers();
262      base.Problem_OperatorsChanged(sender, e);
263    }
264    private void ElitesParameter_ValueChanged(object sender, EventArgs e) {
265      Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
266      ParameterizeSelectors();
267    }
268    private void Elites_ValueChanged(object sender, EventArgs e) {
269      ParameterizeSelectors();
270    }
271
272    private void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) {
273      PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
274      ParameterizeSelectors();
275    }
276    private void PopulationSize_ValueChanged(object sender, EventArgs e) {
277      ParameterizeSelectors();
278    }
279    private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) {
280      ParameterizeGeneticAlgorithmMainLoop();
281      ParameterizeSelectors();
282      ParameterizeAnalyzers();
283    }
284    #endregion
285
286    #region Helpers
287    private void Initialize() {
288      PopulationSizeParameter.ValueChanged += new EventHandler(PopulationSizeParameter_ValueChanged);
289      PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged);
290      ElitesParameter.ValueChanged += new EventHandler(ElitesParameter_ValueChanged);
291      Elites.ValueChanged += new EventHandler(Elites_ValueChanged);
292      if (Problem != null) {
293        Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged);
294      }
295    }
296
297    private void ParameterizeSolutionsCreator() {
298      SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
299      SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name;
300    }
301    private void ParameterizeGeneticAlgorithmMainLoop() {
302      GeneticAlgorithmMainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
303      GeneticAlgorithmMainLoop.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
304      GeneticAlgorithmMainLoop.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
305    }
306    private void ParameterizeStochasticOperator(IOperator op) {
307      IStochasticOperator stochasticOp = op as IStochasticOperator;
308      if (stochasticOp != null) {
309        stochasticOp.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName;
310        stochasticOp.RandomParameter.Hidden = true;
311      }
312    }
313    private void ParameterizeSelectors() {
314      foreach (ISelector selector in SelectorParameter.ValidValues) {
315        selector.CopySelected = new BoolValue(true);
316        selector.NumberOfSelectedSubScopesParameter.Value = new IntValue(2 * (PopulationSizeParameter.Value.Value - ElitesParameter.Value.Value));
317        selector.NumberOfSelectedSubScopesParameter.Hidden = true;
318        ParameterizeStochasticOperator(selector);
319      }
320      if (Problem != null) {
321        foreach (ISingleObjectiveSelector selector in SelectorParameter.ValidValues.OfType<ISingleObjectiveSelector>()) {
322          selector.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
323          selector.MaximizationParameter.Hidden = true;
324          selector.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
325          selector.QualityParameter.Hidden = true;
326        }
327      }
328    }
329    private void ParameterizeAnalyzers() {
330      qualityAnalyzer.ResultsParameter.ActualName = "Results";
331      qualityAnalyzer.ResultsParameter.Hidden = true;
332      if (Problem != null) {
333        qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
334        qualityAnalyzer.MaximizationParameter.Hidden = true;
335        qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
336        qualityAnalyzer.QualityParameter.Depth = 1;
337        qualityAnalyzer.QualityParameter.Hidden = true;
338        qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
339        qualityAnalyzer.BestKnownQualityParameter.Hidden = true;
340      }
341    }
342    private void ParameterizeIterationBasedOperators() {
343      if (Problem != null) {
344        foreach (IIterationBasedOperator op in Problem.Operators.OfType<IIterationBasedOperator>()) {
345          op.IterationsParameter.ActualName = "Generations";
346          op.IterationsParameter.Hidden = true;
347          op.MaximumIterationsParameter.ActualName = "MaximumGenerations";
348          op.MaximumIterationsParameter.Hidden = true;
349        }
350      }
351    }
352    private void UpdateCrossovers() {
353      ICrossover oldCrossover = CrossoverParameter.Value;
354      CrossoverParameter.ValidValues.Clear();
355      foreach (ICrossover crossover in Problem.Operators.OfType<ICrossover>().OrderBy(x => x.Name))
356        CrossoverParameter.ValidValues.Add(crossover);
357      if (oldCrossover != null) {
358        ICrossover crossover = CrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldCrossover.GetType());
359        if (crossover != null) CrossoverParameter.Value = crossover;
360      }
361    }
362    private void UpdateMutators() {
363      IManipulator oldMutator = MutatorParameter.Value;
364      MutatorParameter.ValidValues.Clear();
365      foreach (IManipulator mutator in Problem.Operators.OfType<IManipulator>().OrderBy(x => x.Name))
366        MutatorParameter.ValidValues.Add(mutator);
367      if (oldMutator != null) {
368        IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType());
369        if (mutator != null) MutatorParameter.Value = mutator;
370      }
371    }
372    private void UpdateAnalyzers() {
373      Analyzer.Operators.Clear();
374      if (Problem != null) {
375        foreach (IAnalyzer analyzer in Problem.Operators.OfType<IAnalyzer>()) {
376          foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType<IScopeTreeLookupParameter>())
377            param.Depth = 1;
378          Analyzer.Operators.Add(analyzer);
379        }
380      }
381      Analyzer.Operators.Add(qualityAnalyzer);
382    }
383    private GeneticAlgorithmMainLoop FindMainLoop(IOperator start) {
384      IOperator mainLoop = start;
385      while (mainLoop != null && !(mainLoop is GeneticAlgorithmMainLoop))
386        mainLoop = ((SingleSuccessorOperator)mainLoop).Successor;
387      if (mainLoop == null) return null;
388      else return (GeneticAlgorithmMainLoop)mainLoop;
389    }
390    #endregion
391  }
392}
Note: See TracBrowser for help on using the repository browser.