1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
28 | public static class KMeansClusteringUtil {
|
---|
29 | public static IEnumerable<int> FindClosestCenters(IEnumerable<double[]> centers, IDataset dataset, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows) {
|
---|
30 | int nRows = rows.Count();
|
---|
31 | int nCols = allowedInputVariables.Count();
|
---|
32 | int[] closestCenter = new int[nRows];
|
---|
33 | double[] bestCenterDistance = Enumerable.Repeat(double.MaxValue, nRows).ToArray();
|
---|
34 | int centerIndex = 1;
|
---|
35 |
|
---|
36 | foreach (double[] center in centers) {
|
---|
37 | if (nCols != center.Length) throw new ArgumentException();
|
---|
38 | int rowIndex = 0;
|
---|
39 | foreach (var row in rows) {
|
---|
40 | // calc euclidian distance of point to center
|
---|
41 | double centerDistance = 0;
|
---|
42 | int col = 0;
|
---|
43 | foreach (var inputVariable in allowedInputVariables) {
|
---|
44 | double d = center[col++] - dataset.GetDoubleValue(inputVariable, row);
|
---|
45 | d = d * d; // square;
|
---|
46 | centerDistance += d;
|
---|
47 | if (centerDistance > bestCenterDistance[rowIndex]) break;
|
---|
48 | }
|
---|
49 | if (centerDistance < bestCenterDistance[rowIndex]) {
|
---|
50 | bestCenterDistance[rowIndex] = centerDistance;
|
---|
51 | closestCenter[rowIndex] = centerIndex;
|
---|
52 | }
|
---|
53 | rowIndex++;
|
---|
54 | }
|
---|
55 | centerIndex++;
|
---|
56 | }
|
---|
57 | return closestCenter;
|
---|
58 | }
|
---|
59 |
|
---|
60 | public static double CalculateIntraClusterSumOfSquares(KMeansClusteringModel model, IDataset dataset, IEnumerable<int> rows) {
|
---|
61 | List<int> clusterValues = model.GetClusterValues(dataset, rows).ToList();
|
---|
62 | List<string> allowedInputVariables = model.AllowedInputVariables.ToList();
|
---|
63 | int nCols = allowedInputVariables.Count;
|
---|
64 | Dictionary<int, List<double[]>> clusterPoints = new Dictionary<int, List<double[]>>();
|
---|
65 | Dictionary<int, double[]> clusterMeans = new Dictionary<int, double[]>();
|
---|
66 | foreach (var clusterValue in clusterValues.Distinct()) {
|
---|
67 | clusterPoints.Add(clusterValue, new List<double[]>());
|
---|
68 | }
|
---|
69 |
|
---|
70 | // collect points of clusters
|
---|
71 | int clusterValueIndex = 0;
|
---|
72 | foreach (var row in rows) {
|
---|
73 | double[] p = new double[allowedInputVariables.Count];
|
---|
74 | for (int i = 0; i < nCols; i++) {
|
---|
75 | p[i] = dataset.GetDoubleValue(allowedInputVariables[i], row);
|
---|
76 | }
|
---|
77 | clusterPoints[clusterValues[clusterValueIndex++]].Add(p);
|
---|
78 | }
|
---|
79 | // calculate cluster means
|
---|
80 | foreach (var pair in clusterPoints) {
|
---|
81 | double[] mean = new double[nCols];
|
---|
82 | foreach (var p in pair.Value) {
|
---|
83 | for (int i = 0; i < nCols; i++) {
|
---|
84 | mean[i] += p[i];
|
---|
85 | }
|
---|
86 | }
|
---|
87 | for (int i = 0; i < nCols; i++) {
|
---|
88 | mean[i] /= pair.Value.Count;
|
---|
89 | }
|
---|
90 | clusterMeans[pair.Key] = mean;
|
---|
91 | }
|
---|
92 | // calculate distances
|
---|
93 | double allCenterDistances = 0;
|
---|
94 | foreach (var pair in clusterMeans) {
|
---|
95 | double[] mean = pair.Value;
|
---|
96 | double centerDistances = 0;
|
---|
97 | foreach (var clusterPoint in clusterPoints[pair.Key]) {
|
---|
98 | double centerDistance = 0;
|
---|
99 | for (int i = 0; i < nCols; i++) {
|
---|
100 | double d = mean[i] - clusterPoint[i];
|
---|
101 | d = d * d;
|
---|
102 | centerDistance += d;
|
---|
103 | }
|
---|
104 | centerDistances += centerDistance;
|
---|
105 | }
|
---|
106 | allCenterDistances += centerDistances;
|
---|
107 | }
|
---|
108 | return allCenterDistances;
|
---|
109 | }
|
---|
110 | }
|
---|
111 | }
|
---|