Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/kMeans/KMeansClusteringModel.cs @ 9598

Last change on this file since 9598 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 3.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Drawing;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis;
29
30namespace HeuristicLab.Algorithms.DataAnalysis {
31  /// <summary>
32  /// Represents a k-Means clustering model.
33  /// </summary>
34  [StorableClass]
35  [Item("KMeansClusteringModel", "Represents a k-Means clustering model.")]
36  public sealed class KMeansClusteringModel : NamedItem, IClusteringModel {
37    public static new Image StaticItemImage {
38      get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
39    }
40
41    [Storable]
42    private string[] allowedInputVariables;
43    public IEnumerable<string> AllowedInputVariables {
44      get { return allowedInputVariables; }
45    }
46    [Storable]
47    private List<double[]> centers;
48    public IEnumerable<double[]> Centers {
49      get {
50        return centers.Select(x => (double[])x.Clone());
51      }
52    }
53    [StorableConstructor]
54    private KMeansClusteringModel(bool deserializing) : base(deserializing) { }
55    private KMeansClusteringModel(KMeansClusteringModel original, Cloner cloner)
56      : base(original, cloner) {
57      this.allowedInputVariables = (string[])original.allowedInputVariables.Clone();
58      this.centers = new List<double[]>(original.Centers);
59    }
60    public KMeansClusteringModel(double[,] centers, IEnumerable<string> allowedInputVariables)
61      : base() {
62      this.name = ItemName;
63      this.description = ItemDescription;
64      // disect center matrix into list of double[]
65      // centers are given as double matrix where number of rows = dimensions and number of columns = clusters
66      // each column is a cluster center
67      this.centers = new List<double[]>();
68      for (int i = 0; i < centers.GetLength(1); i++) {
69        double[] c = new double[centers.GetLength(0)];
70        for (int j = 0; j < c.Length; j++) {
71          c[j] = centers[j, i];
72        }
73        this.centers.Add(c);
74      }
75      this.allowedInputVariables = allowedInputVariables.ToArray();
76    }
77
78    public override IDeepCloneable Clone(Cloner cloner) {
79      return new KMeansClusteringModel(this, cloner);
80    }
81
82
83    public IEnumerable<int> GetClusterValues(Dataset dataset, IEnumerable<int> rows) {
84      return KMeansClusteringUtil.FindClosestCenters(centers, dataset, allowedInputVariables, rows);
85    }
86  }
87}
Note: See TracBrowser for help on using the repository browser.