Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/TSNE/TSNEAlgorithm.cs @ 15490

Last change on this file since 15490 was 15234, checked in by abeham, 7 years ago

#2700: fixed some typos

File size: 22.8 KB
RevLine 
[14414]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[14518]22using System;
[14512]23using System.Collections.Generic;
24using System.Drawing;
[14414]25using System.Linq;
[14518]26using System.Threading;
[14414]27using HeuristicLab.Analysis;
28using HeuristicLab.Common;
29using HeuristicLab.Core;
30using HeuristicLab.Data;
[14518]31using HeuristicLab.Optimization;
[14414]32using HeuristicLab.Parameters;
33using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[15225]34using HeuristicLab.PluginInfrastructure;
[14414]35using HeuristicLab.Problems.DataAnalysis;
36using HeuristicLab.Random;
37
38namespace HeuristicLab.Algorithms.DataAnalysis {
39  /// <summary>
[14785]40  /// t-distributed stochastic neighbourhood embedding (tSNE) projects the data in a low dimensional
[14767]41  /// space to allow visual cluster identification.
[14414]42  /// </summary>
[14785]43  [Item("tSNE", "t-distributed stochastic neighbourhood embedding projects the data in a low " +
[15207]44                "dimensional space to allow visual cluster identification. Implemented similar to: https://lvdmaaten.github.io/tsne/#implementations (Barnes-Hut t-SNE). Described in : https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf")]
[14414]45  [Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 100)]
46  [StorableClass]
[14785]47  public sealed class TSNEAlgorithm : BasicAlgorithm {
[14767]48    public override bool SupportsPause {
[14807]49      get { return true; }
[14558]50    }
[14767]51    public override Type ProblemType {
[14518]52      get { return typeof(IDataAnalysisProblem); }
53    }
[14767]54    public new IDataAnalysisProblem Problem {
[14518]55      get { return (IDataAnalysisProblem)base.Problem; }
56      set { base.Problem = value; }
57    }
[14414]58
[14785]59    #region parameter names
[15227]60    private const string DistanceFunctionParameterName = "DistanceFunction";
[14414]61    private const string PerplexityParameterName = "Perplexity";
62    private const string ThetaParameterName = "Theta";
63    private const string NewDimensionsParameterName = "Dimensions";
64    private const string MaxIterationsParameterName = "MaxIterations";
65    private const string StopLyingIterationParameterName = "StopLyingIteration";
66    private const string MomentumSwitchIterationParameterName = "MomentumSwitchIteration";
67    private const string InitialMomentumParameterName = "InitialMomentum";
68    private const string FinalMomentumParameterName = "FinalMomentum";
69    private const string EtaParameterName = "Eta";
70    private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
71    private const string SeedParameterName = "Seed";
[15227]72    private const string ClassesNameParameterName = "ClassesName";
[14518]73    private const string NormalizationParameterName = "Normalization";
[14859]74    private const string UpdateIntervalParameterName = "UpdateInterval";
[14414]75    #endregion
76
[14788]77    #region result names
78    private const string IterationResultName = "Iteration";
79    private const string ErrorResultName = "Error";
80    private const string ErrorPlotResultName = "Error plot";
81    private const string ScatterPlotResultName = "Scatterplot";
82    private const string DataResultName = "Projected data";
83    #endregion
84
[14785]85    #region parameter properties
[14767]86    public IFixedValueParameter<DoubleValue> PerplexityParameter {
[14414]87      get { return Parameters[PerplexityParameterName] as IFixedValueParameter<DoubleValue>; }
88    }
[15225]89    public IFixedValueParameter<PercentValue> ThetaParameter {
90      get { return Parameters[ThetaParameterName] as IFixedValueParameter<PercentValue>; }
[14414]91    }
[14767]92    public IFixedValueParameter<IntValue> NewDimensionsParameter {
[14414]93      get { return Parameters[NewDimensionsParameterName] as IFixedValueParameter<IntValue>; }
94    }
[15227]95    public IConstrainedValueParameter<IDistance<double[]>> DistanceFunctionParameter {
96      get { return Parameters[DistanceFunctionParameterName] as IConstrainedValueParameter<IDistance<double[]>>; }
[14414]97    }
[14767]98    public IFixedValueParameter<IntValue> MaxIterationsParameter {
[14414]99      get { return Parameters[MaxIterationsParameterName] as IFixedValueParameter<IntValue>; }
100    }
[14767]101    public IFixedValueParameter<IntValue> StopLyingIterationParameter {
[14414]102      get { return Parameters[StopLyingIterationParameterName] as IFixedValueParameter<IntValue>; }
103    }
[14767]104    public IFixedValueParameter<IntValue> MomentumSwitchIterationParameter {
[14414]105      get { return Parameters[MomentumSwitchIterationParameterName] as IFixedValueParameter<IntValue>; }
106    }
[14767]107    public IFixedValueParameter<DoubleValue> InitialMomentumParameter {
[14414]108      get { return Parameters[InitialMomentumParameterName] as IFixedValueParameter<DoubleValue>; }
109    }
[14767]110    public IFixedValueParameter<DoubleValue> FinalMomentumParameter {
[14414]111      get { return Parameters[FinalMomentumParameterName] as IFixedValueParameter<DoubleValue>; }
112    }
[14767]113    public IFixedValueParameter<DoubleValue> EtaParameter {
[14414]114      get { return Parameters[EtaParameterName] as IFixedValueParameter<DoubleValue>; }
115    }
[14767]116    public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
[14414]117      get { return Parameters[SetSeedRandomlyParameterName] as IFixedValueParameter<BoolValue>; }
118    }
[14767]119    public IFixedValueParameter<IntValue> SeedParameter {
[14414]120      get { return Parameters[SeedParameterName] as IFixedValueParameter<IntValue>; }
121    }
[15227]122    public IConstrainedValueParameter<StringValue> ClassesNameParameter {
123      get { return Parameters[ClassesNameParameterName] as IConstrainedValueParameter<StringValue>; }
[14512]124    }
[14767]125    public IFixedValueParameter<BoolValue> NormalizationParameter {
[14518]126      get { return Parameters[NormalizationParameterName] as IFixedValueParameter<BoolValue>; }
127    }
[14859]128    public IFixedValueParameter<IntValue> UpdateIntervalParameter {
129      get { return Parameters[UpdateIntervalParameterName] as IFixedValueParameter<IntValue>; }
130    }
[14414]131    #endregion
132
133    #region  Properties
[15227]134    public IDistance<double[]> DistanceFunction {
135      get { return DistanceFunctionParameter.Value; }
[14414]136    }
[14767]137    public double Perplexity {
[14414]138      get { return PerplexityParameter.Value.Value; }
[14785]139      set { PerplexityParameter.Value.Value = value; }
[14414]140    }
[14767]141    public double Theta {
[14785]142      get { return ThetaParameter.Value.Value; }
143      set { ThetaParameter.Value.Value = value; }
[14414]144    }
[14767]145    public int NewDimensions {
[14414]146      get { return NewDimensionsParameter.Value.Value; }
[14785]147      set { NewDimensionsParameter.Value.Value = value; }
[14414]148    }
[14767]149    public int MaxIterations {
[14414]150      get { return MaxIterationsParameter.Value.Value; }
[14785]151      set { MaxIterationsParameter.Value.Value = value; }
[14414]152    }
[14767]153    public int StopLyingIteration {
[14414]154      get { return StopLyingIterationParameter.Value.Value; }
[14785]155      set { StopLyingIterationParameter.Value.Value = value; }
[14414]156    }
[14767]157    public int MomentumSwitchIteration {
[14414]158      get { return MomentumSwitchIterationParameter.Value.Value; }
[14785]159      set { MomentumSwitchIterationParameter.Value.Value = value; }
[14414]160    }
[14767]161    public double InitialMomentum {
[14414]162      get { return InitialMomentumParameter.Value.Value; }
[14785]163      set { InitialMomentumParameter.Value.Value = value; }
[14414]164    }
[14767]165    public double FinalMomentum {
[14414]166      get { return FinalMomentumParameter.Value.Value; }
[14785]167      set { FinalMomentumParameter.Value.Value = value; }
[14414]168    }
[14767]169    public double Eta {
[14785]170      get { return EtaParameter.Value.Value; }
171      set { EtaParameter.Value.Value = value; }
[14414]172    }
[14767]173    public bool SetSeedRandomly {
[14414]174      get { return SetSeedRandomlyParameter.Value.Value; }
[14785]175      set { SetSeedRandomlyParameter.Value.Value = value; }
[14414]176    }
[14785]177    public int Seed {
178      get { return SeedParameter.Value.Value; }
179      set { SeedParameter.Value.Value = value; }
[14414]180    }
[15227]181    public string ClassesName {
182      get { return ClassesNameParameter.Value != null ? ClassesNameParameter.Value.Value : null; }
183      set { ClassesNameParameter.Value.Value = value; }
[14512]184    }
[14767]185    public bool Normalization {
[14518]186      get { return NormalizationParameter.Value.Value; }
[14785]187      set { NormalizationParameter.Value.Value = value; }
[14518]188    }
[14859]189
190    public int UpdateInterval {
191      get { return UpdateIntervalParameter.Value.Value; }
192      set { UpdateIntervalParameter.Value.Value = value; }
193    }
[14414]194    #endregion
195
196    #region Constructors & Cloning
197    [StorableConstructor]
[14785]198    private TSNEAlgorithm(bool deserializing) : base(deserializing) { }
[14807]199
200    private TSNEAlgorithm(TSNEAlgorithm original, Cloner cloner) : base(original, cloner) {
[15207]201      if (original.dataRowNames != null)
202        this.dataRowNames = new Dictionary<string, List<int>>(original.dataRowNames);
[14863]203      if (original.dataRows != null)
204        this.dataRows = original.dataRows.ToDictionary(kvp => kvp.Key, kvp => cloner.Clone(kvp.Value));
[14859]205      if (original.state != null)
[14807]206        this.state = cloner.Clone(original.state);
207      this.iter = original.iter;
208    }
[14785]209    public override IDeepCloneable Clone(Cloner cloner) { return new TSNEAlgorithm(this, cloner); }
210    public TSNEAlgorithm() {
[15225]211      var distances = new ItemSet<IDistance<double[]>>(ApplicationManager.Manager.GetInstances<IDistance<double[]>>());
[15227]212      Parameters.Add(new ConstrainedValueParameter<IDistance<double[]>>(DistanceFunctionParameterName, "The distance function used to differentiate similar from non-similar points", distances, distances.OfType<EuclideanDistance>().FirstOrDefault()));
[14807]213      Parameters.Add(new FixedValueParameter<DoubleValue>(PerplexityParameterName, "Perplexity-parameter of tSNE. Comparable to k in a k-nearest neighbour algorithm. Recommended value is floor(number of points /3) or lower", new DoubleValue(25)));
[15225]214      Parameters.Add(new FixedValueParameter<PercentValue>(ThetaParameterName, "Value describing how much appoximated " +
[14837]215                                                                              "gradients my differ from exact gradients. Set to 0 for exact calculation and in [0,1] otherwise. " +
216                                                                              "Appropriate values for theta are between 0.1 and 0.7 (default = 0.5). CAUTION: exact calculation of " +
217                                                                              "forces requires building a non-sparse N*N matrix where N is the number of data points. This may " +
218                                                                              "exceed memory limitations. The function is designed to run on large (N > 5000) data sets. It may give" +
[15225]219                                                                              " poor performance on very small data sets(it is better to use a standard t - SNE implementation on such data).", new PercentValue(0)));
[14785]220      Parameters.Add(new FixedValueParameter<IntValue>(NewDimensionsParameterName, "Dimensionality of projected space (usually 2 for easy visual analysis)", new IntValue(2)));
[14807]221      Parameters.Add(new FixedValueParameter<IntValue>(MaxIterationsParameterName, "Maximum number of iterations for gradient descent.", new IntValue(1000)));
222      Parameters.Add(new FixedValueParameter<IntValue>(StopLyingIterationParameterName, "Number of iterations after which p is no longer approximated.", new IntValue(0)));
223      Parameters.Add(new FixedValueParameter<IntValue>(MomentumSwitchIterationParameterName, "Number of iterations after which the momentum in the gradient descent is switched.", new IntValue(0)));
224      Parameters.Add(new FixedValueParameter<DoubleValue>(InitialMomentumParameterName, "The initial momentum in the gradient descent.", new DoubleValue(0.5)));
225      Parameters.Add(new FixedValueParameter<DoubleValue>(FinalMomentumParameterName, "The final momentum.", new DoubleValue(0.8)));
[14837]226      Parameters.Add(new FixedValueParameter<DoubleValue>(EtaParameterName, "Gradient descent learning rate.", new DoubleValue(10)));
[14807]227      Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "If the seed should be random.", new BoolValue(true)));
228      Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The seed used if it should not be random.", new IntValue(0)));
[15234]229      Parameters.Add(new OptionalConstrainedValueParameter<StringValue>(ClassesNameParameterName, "Name of the column specifying the class lables of each data point. If this is not set training/test is used as labels."));
[14807]230      Parameters.Add(new FixedValueParameter<BoolValue>(NormalizationParameterName, "Whether the data should be zero centered and have variance of 1 for each variable, so different scalings are ignored.", new BoolValue(true)));
[15234]231      Parameters.Add(new FixedValueParameter<IntValue>(UpdateIntervalParameterName, "The interval after which the results will be updated.", new IntValue(50)));
[14859]232      Parameters[UpdateIntervalParameterName].Hidden = true;
[14518]233
234      MomentumSwitchIterationParameter.Hidden = true;
235      InitialMomentumParameter.Hidden = true;
236      FinalMomentumParameter.Hidden = true;
237      StopLyingIterationParameter.Hidden = true;
[14837]238      EtaParameter.Hidden = false;
[15225]239      Problem = new RegressionProblem();
[14414]240    }
241    #endregion
242
[14788]243    [Storable]
[14807]244    private Dictionary<string, List<int>> dataRowNames;
[14788]245    [Storable]
[14807]246    private Dictionary<string, ScatterPlotDataRow> dataRows;
247    [Storable]
248    private TSNEStatic<double[]>.TSNEState state;
249    [Storable]
250    private int iter;
[14414]251
[14807]252    public override void Prepare() {
253      base.Prepare();
254      dataRowNames = null;
255      dataRows = null;
256      state = null;
257    }
[14788]258
[14518]259    protected override void Run(CancellationToken cancellationToken) {
[14742]260      var problemData = Problem.ProblemData;
[14807]261      // set up and initialized everything if necessary
[14859]262      if (state == null) {
263        if (SetSeedRandomly) Seed = new System.Random().Next();
[14807]264        var random = new MersenneTwister((uint)Seed);
265        var dataset = problemData.Dataset;
266        var allowedInputVariables = problemData.AllowedInputVariables.ToArray();
267        var data = new double[dataset.Rows][];
[14859]268        for (var row = 0; row < dataset.Rows; row++)
[14807]269          data[row] = allowedInputVariables.Select(col => dataset.GetDoubleValue(col, row)).ToArray();
[14512]270
[14859]271        if (Normalization) data = NormalizeData(data);
[14788]272
[15227]273        state = TSNEStatic<double[]>.CreateState(data, DistanceFunction, random, NewDimensions, Perplexity, Theta,
[14807]274          StopLyingIteration, MomentumSwitchIteration, InitialMomentum, FinalMomentum, Eta);
[14788]275
[14807]276        SetUpResults(data);
277        iter = 0;
[14788]278      }
[14859]279      for (; iter < MaxIterations && !cancellationToken.IsCancellationRequested; iter++) {
280        if (iter % UpdateInterval == 0)
281          Analyze(state);
[14807]282        TSNEStatic<double[]>.Iterate(state);
283      }
[14859]284      Analyze(state);
[14788]285    }
286
[15225]287    #region Events
288    protected override void OnProblemChanged() {
289      base.OnProblemChanged();
290      if (Problem == null) return;
291      OnProblemDataChanged(this, null);
292    }
293
294    protected override void RegisterProblemEvents() {
295      base.RegisterProblemEvents();
296      Problem.ProblemDataChanged += OnProblemDataChanged;
297    }
298    protected override void DeregisterProblemEvents() {
299      base.DeregisterProblemEvents();
300      Problem.ProblemDataChanged -= OnProblemDataChanged;
301    }
302
303    private void OnProblemDataChanged(object sender, EventArgs args) {
304      if (Problem == null || Problem.ProblemData == null) return;
[15227]305      if (!Parameters.ContainsKey(ClassesNameParameterName)) return;
306      ClassesNameParameter.ValidValues.Clear();
307      foreach (var input in Problem.ProblemData.InputVariables) ClassesNameParameter.ValidValues.Add(input);
[15225]308    }
309
310    #endregion
311
312    #region Helpers
[14788]313    private void SetUpResults(IReadOnlyCollection<double[]> data) {
[14859]314      if (Results == null) return;
[14788]315      var results = Results;
316      dataRowNames = new Dictionary<string, List<int>>();
317      dataRows = new Dictionary<string, ScatterPlotDataRow>();
318      var problemData = Problem.ProblemData;
319
[14785]320      //color datapoints acording to classes variable (be it double or string)
[15227]321      if (problemData.Dataset.VariableNames.Contains(ClassesName)) {
322        if ((problemData.Dataset as Dataset).VariableHasType<string>(ClassesName)) {
323          var classes = problemData.Dataset.GetStringValues(ClassesName).ToArray();
[14859]324          for (var i = 0; i < classes.Length; i++) {
325            if (!dataRowNames.ContainsKey(classes[i])) dataRowNames.Add(classes[i], new List<int>());
[14742]326            dataRowNames[classes[i]].Add(i);
[14512]327          }
[15227]328        } else if ((problemData.Dataset as Dataset).VariableHasType<double>(ClassesName)) {
329          var classValues = problemData.Dataset.GetDoubleValues(ClassesName).ToArray();
[14859]330          var max = classValues.Max() + 0.1;
[14512]331          var min = classValues.Min() - 0.1;
[14742]332          const int contours = 8;
[14859]333          for (var i = 0; i < contours; i++) {
[14742]334            var contourname = GetContourName(i, min, max, contours);
335            dataRowNames.Add(contourname, new List<int>());
[14788]336            dataRows.Add(contourname, new ScatterPlotDataRow(contourname, "", new List<Point2D<double>>()));
337            dataRows[contourname].VisualProperties.Color = GetHeatMapColor(i, contours);
338            dataRows[contourname].VisualProperties.PointSize = i + 3;
[14512]339          }
[14859]340          for (var i = 0; i < classValues.Length; i++) {
[14742]341            dataRowNames[GetContourName(classValues[i], min, max, contours)].Add(i);
[14512]342          }
343        }
344      } else {
[14518]345        dataRowNames.Add("Training", problemData.TrainingIndices.ToList());
346        dataRowNames.Add("Test", problemData.TestIndices.ToList());
[14512]347      }
348
[14859]349      if (!results.ContainsKey(IterationResultName)) results.Add(new Result(IterationResultName, new IntValue(0)));
[14788]350      else ((IntValue)results[IterationResultName].Value).Value = 0;
351
[14859]352      if (!results.ContainsKey(ErrorResultName)) results.Add(new Result(ErrorResultName, new DoubleValue(0)));
[14788]353      else ((DoubleValue)results[ErrorResultName].Value).Value = 0;
354
[14859]355      if (!results.ContainsKey(ErrorPlotResultName)) results.Add(new Result(ErrorPlotResultName, new DataTable(ErrorPlotResultName, "Development of errors during gradient descent")));
[14788]356      else results[ErrorPlotResultName].Value = new DataTable(ErrorPlotResultName, "Development of errors during gradient descent");
357
358      var plot = results[ErrorPlotResultName].Value as DataTable;
[14859]359      if (plot == null) throw new ArgumentException("could not create/access error data table in results collection");
[14788]360
[14859]361      if (!plot.Rows.ContainsKey("errors")) plot.Rows.Add(new DataRow("errors"));
[14788]362      plot.Rows["errors"].Values.Clear();
[14859]363      plot.Rows["errors"].VisualProperties.StartIndexZero = true;
[14788]364
365      results.Add(new Result(ScatterPlotResultName, "Plot of the projected data", new ScatterPlot(DataResultName, "")));
366      results.Add(new Result(DataResultName, "Projected Data", new DoubleMatrix()));
[14414]367    }
368
[14807]369    private void Analyze(TSNEStatic<double[]>.TSNEState tsneState) {
[14859]370      if (Results == null) return;
[14788]371      var results = Results;
372      var plot = results[ErrorPlotResultName].Value as DataTable;
[14859]373      if (plot == null) throw new ArgumentException("Could not create/access error data table in results collection.");
[14788]374      var errors = plot.Rows["errors"].Values;
375      var c = tsneState.EvaluateError();
376      errors.Add(c);
[14807]377      ((IntValue)results[IterationResultName].Value).Value = tsneState.iter;
[14788]378      ((DoubleValue)results[ErrorResultName].Value).Value = errors.Last();
379
380      var ndata = Normalize(tsneState.newData);
381      results[DataResultName].Value = new DoubleMatrix(ndata);
382      var splot = results[ScatterPlotResultName].Value as ScatterPlot;
383      FillScatterPlot(ndata, splot);
384    }
385
386    private void FillScatterPlot(double[,] lowDimData, ScatterPlot plot) {
[14859]387      foreach (var rowName in dataRowNames.Keys) {
388        if (!plot.Rows.ContainsKey(rowName))
[14788]389          plot.Rows.Add(dataRows.ContainsKey(rowName) ? dataRows[rowName] : new ScatterPlotDataRow(rowName, "", new List<Point2D<double>>()));
390        plot.Rows[rowName].Points.Replace(dataRowNames[rowName].Select(i => new Point2D<double>(lowDimData[i, 0], lowDimData[i, 1])));
391      }
392    }
393
394    private static double[,] Normalize(double[,] data) {
395      var max = new double[data.GetLength(1)];
396      var min = new double[data.GetLength(1)];
397      var res = new double[data.GetLength(0), data.GetLength(1)];
[14859]398      for (var i = 0; i < max.Length; i++) max[i] = min[i] = data[0, i];
399      for (var i = 0; i < data.GetLength(0); i++)
400        for (var j = 0; j < data.GetLength(1); j++) {
[14788]401          var v = data[i, j];
402          max[j] = Math.Max(max[j], v);
403          min[j] = Math.Min(min[j], v);
404        }
[14859]405      for (var i = 0; i < data.GetLength(0); i++) {
406        for (var j = 0; j < data.GetLength(1); j++) {
[15225]407          var d = max[j] - min[j];
408          var s = data[i, j] - (max[j] + min[j]) / 2;  //shift data
409          if (d.IsAlmost(0)) res[i, j] = data[i, j];   //no scaling possible
410          else res[i, j] = s / d;  //scale data
[14788]411        }
412      }
413      return res;
414    }
415
[14785]416    private static double[][] NormalizeData(IReadOnlyList<double[]> data) {
[14859]417      // as in tSNE implementation by van der Maaten
[14518]418      var n = data[0].Length;
419      var mean = new double[n];
[14859]420      var max = new double[n];
[14785]421      var nData = new double[data.Count][];
[14859]422      for (var i = 0; i < n; i++) {
423        mean[i] = Enumerable.Range(0, data.Count).Select(x => data[x][i]).Average();
424        max[i] = Enumerable.Range(0, data.Count).Max(x => Math.Abs(data[x][i]));
[14518]425      }
[14859]426      for (var i = 0; i < data.Count; i++) {
[14785]427        nData[i] = new double[n];
[15225]428        for (var j = 0; j < n; j++) nData[i][j] = max[j].IsAlmost(0) ? data[i][j] - mean[j] : (data[i][j] - mean[j]) / max[j];
[14518]429      }
430      return nData;
431    }
[14788]432
[14512]433    private static Color GetHeatMapColor(int contourNr, int noContours) {
434      var q = (double)contourNr / noContours;  // q in [0,1]
435      var c = q < 0.5 ? Color.FromArgb((int)(q * 2 * 255), 255, 0) : Color.FromArgb(255, (int)((1 - q) * 2 * 255), 0);
436      return c;
437    }
[14788]438
[14512]439    private static string GetContourName(double value, double min, double max, int noContours) {
440      var size = (max - min) / noContours;
441      var contourNr = (int)((value - min) / size);
442      return GetContourName(contourNr, min, max, noContours);
443    }
[14788]444
[14512]445    private static string GetContourName(int i, double min, double max, int noContours) {
446      var size = (max - min) / noContours;
447      return "[" + (min + i * size) + ";" + (min + (i + 1) * size) + ")";
448    }
[15225]449    #endregion
[14414]450  }
451}
Note: See TracBrowser for help on using the repository browser.