1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 |
|
---|
21 | //Code is based on an implementation from Laurens van der Maaten
|
---|
22 |
|
---|
23 | /*
|
---|
24 | *
|
---|
25 | * Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
|
---|
26 | * All rights reserved.
|
---|
27 | *
|
---|
28 | * Redistribution and use in source and binary forms, with or without
|
---|
29 | * modification, are permitted provided that the following conditions are met:
|
---|
30 | * 1. Redistributions of source code must retain the above copyright
|
---|
31 | * notice, this list of conditions and the following disclaimer.
|
---|
32 | * 2. Redistributions in binary form must reproduce the above copyright
|
---|
33 | * notice, this list of conditions and the following disclaimer in the
|
---|
34 | * documentation and/or other materials provided with the distribution.
|
---|
35 | * 3. All advertising materials mentioning features or use of this software
|
---|
36 | * must display the following acknowledgement:
|
---|
37 | * This product includes software developed by the Delft University of Technology.
|
---|
38 | * 4. Neither the name of the Delft University of Technology nor the names of
|
---|
39 | * its contributors may be used to endorse or promote products derived from
|
---|
40 | * this software without specific prior written permission.
|
---|
41 | *
|
---|
42 | * THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
|
---|
43 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
44 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
---|
45 | * EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
---|
46 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
---|
47 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
---|
48 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
---|
49 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
---|
50 | * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
---|
51 | * OF SUCH DAMAGE.
|
---|
52 | *
|
---|
53 | */
|
---|
54 | #endregion
|
---|
55 |
|
---|
56 | using System;
|
---|
57 | using System.Collections.Generic;
|
---|
58 | using System.Linq;
|
---|
59 | using HeuristicLab.Common;
|
---|
60 |
|
---|
61 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
62 | /// <summary>
|
---|
63 | /// Space partitioning tree (SPTree)
|
---|
64 | /// </summary>
|
---|
65 | public class SpacePartitioningTree : ISpacePartitioningTree {
|
---|
66 | private const uint QT_NODE_CAPACITY = 1;
|
---|
67 |
|
---|
68 | private double[] buff;
|
---|
69 | private SpacePartitioningTree parent;
|
---|
70 | private int dimension;
|
---|
71 | private bool isLeaf;
|
---|
72 | private uint size;
|
---|
73 | private uint cumulativeSize;
|
---|
74 |
|
---|
75 | // Axis-aligned bounding box stored as a center with half-dimensions to represent the boundaries of this quad tree
|
---|
76 | private Cell boundary;
|
---|
77 |
|
---|
78 | private double[,] data;
|
---|
79 |
|
---|
80 | // Indices in this space-partitioning tree node, corresponding center-of-mass, and list of all children
|
---|
81 | private double[] centerOfMass;
|
---|
82 | private readonly int[] index = new int[QT_NODE_CAPACITY];
|
---|
83 |
|
---|
84 | // Children
|
---|
85 | private SpacePartitioningTree[] children;
|
---|
86 | private uint noChildren;
|
---|
87 |
|
---|
88 | public SpacePartitioningTree(double[,] inpData) {
|
---|
89 | var d = inpData.GetLength(1);
|
---|
90 | var n = inpData.GetLength(0);
|
---|
91 | var meanY = new double[d];
|
---|
92 | var minY = new double[d];
|
---|
93 | for (var i = 0; i < d; i++) minY[i] = double.MaxValue;
|
---|
94 | var maxY = new double[d];
|
---|
95 | for (var i = 0; i < d; i++) maxY[i] = double.MinValue;
|
---|
96 | for (uint i = 0; i < n; i++) {
|
---|
97 | for (uint j = 0; j < d; j++) {
|
---|
98 | meanY[j] += inpData[i, j];
|
---|
99 | if (inpData[i, j] < minY[j]) minY[j] = inpData[i, j];
|
---|
100 | if (inpData[i, j] > maxY[j]) maxY[j] = inpData[i, j];
|
---|
101 | }
|
---|
102 | }
|
---|
103 | for (var i = 0; i < d; i++) meanY[i] /= n;
|
---|
104 | var width = new double[d];
|
---|
105 | for (var i = 0; i < d; i++) width[i] = Math.Max(maxY[i] - meanY[i], meanY[i] - minY[i]) + 1e-5;
|
---|
106 | Init(null, inpData, meanY, width);
|
---|
107 | Fill(n);
|
---|
108 | }
|
---|
109 |
|
---|
110 | public SpacePartitioningTree(double[,] inpData, IEnumerable<double> impCorner, IEnumerable<double> impWith) {
|
---|
111 | Init(null, inpData, impCorner, impWith);
|
---|
112 | }
|
---|
113 | public SpacePartitioningTree(SpacePartitioningTree parent, double[,] inpData, IEnumerable<double> impCorner, IEnumerable<double> impWith) {
|
---|
114 | Init(parent, inpData, impCorner, impWith);
|
---|
115 | }
|
---|
116 |
|
---|
117 | public ISpacePartitioningTree GetParent() {
|
---|
118 | return parent;
|
---|
119 | }
|
---|
120 |
|
---|
121 | public bool Insert(int newIndex) {
|
---|
122 | // Ignore objects which do not belong in this quad tree
|
---|
123 | var point = new double[dimension];
|
---|
124 | Buffer.BlockCopy(data, sizeof(double) * dimension * newIndex, point, 0, sizeof(double) * dimension);
|
---|
125 | if (!boundary.ContainsPoint(point)) return false;
|
---|
126 | cumulativeSize++;
|
---|
127 | // Online update of cumulative size and center-of-mass
|
---|
128 | var mult1 = (double)(cumulativeSize - 1) / cumulativeSize;
|
---|
129 | var mult2 = 1.0 / cumulativeSize;
|
---|
130 | for (var i = 0; i < dimension; i++) centerOfMass[i] *= mult1;
|
---|
131 | for (var i = 0; i < dimension; i++) centerOfMass[i] += mult2 * point[i];
|
---|
132 |
|
---|
133 | // If there is space in this quad tree and it is a leaf, add the object here
|
---|
134 | if (isLeaf && size < QT_NODE_CAPACITY) {
|
---|
135 | index[size] = newIndex;
|
---|
136 | size++;
|
---|
137 | return true;
|
---|
138 | }
|
---|
139 |
|
---|
140 | // Don't add duplicates for now (this is not very nice)
|
---|
141 | var anyDuplicate = false;
|
---|
142 | for (uint n = 0; n < size; n++) {
|
---|
143 | var duplicate = true;
|
---|
144 | for (var d = 0; d < dimension; d++) {
|
---|
145 | if (Math.Abs(point[d] - data[index[n], d]) < double.Epsilon) continue;
|
---|
146 | duplicate = false; break;
|
---|
147 | }
|
---|
148 | anyDuplicate = anyDuplicate | duplicate;
|
---|
149 | }
|
---|
150 | if (anyDuplicate) return true;
|
---|
151 |
|
---|
152 | // Otherwise, we need to subdivide the current cell
|
---|
153 | if (isLeaf) Subdivide();
|
---|
154 | // Find out where the point can be inserted
|
---|
155 | for (var i = 0; i < noChildren; i++) {
|
---|
156 | if (children[i].Insert(newIndex)) return true;
|
---|
157 | }
|
---|
158 |
|
---|
159 | // Otherwise, the point cannot be inserted (this should never happen)
|
---|
160 | return false;
|
---|
161 | }
|
---|
162 |
|
---|
163 | public void Subdivide() {
|
---|
164 | // Create new children
|
---|
165 | var newCorner = new double[dimension];
|
---|
166 | var newWidth = new double[dimension];
|
---|
167 | for (var i = 0; i < noChildren; i++) {
|
---|
168 | var div = 1;
|
---|
169 | for (var d = 0; d < dimension; d++) {
|
---|
170 | newWidth[d] = .5 * boundary.GetWidth(d);
|
---|
171 | if ((i / div) % 2 == 1) newCorner[d] = boundary.GetCorner(d) - .5 * boundary.GetWidth(d);
|
---|
172 | else newCorner[d] = boundary.GetCorner(d) + .5 * boundary.GetWidth(d);
|
---|
173 | div *= 2;
|
---|
174 | }
|
---|
175 | children[i] = new SpacePartitioningTree(this, data, newCorner, newWidth);
|
---|
176 | }
|
---|
177 |
|
---|
178 | // Move existing points to correct children
|
---|
179 | for (var i = 0; i < size; i++) {
|
---|
180 | var success = false;
|
---|
181 | for (var j = 0; j < noChildren; j++) {
|
---|
182 | if (!success) success = children[j].Insert(index[i]);
|
---|
183 | }
|
---|
184 | index[i] = -1; // as in tSNE implementation by van der Maaten
|
---|
185 | }
|
---|
186 |
|
---|
187 | // Empty parent node
|
---|
188 | size = 0;
|
---|
189 | isLeaf = false;
|
---|
190 | }
|
---|
191 |
|
---|
192 | public bool IsCorrect() {
|
---|
193 | var row = new double[dimension];
|
---|
194 | for (var n = 0; n < size; n++) {
|
---|
195 | Buffer.BlockCopy(data, sizeof(double) * dimension * index[n], row, 0, sizeof(double) * dimension);
|
---|
196 | if (!boundary.ContainsPoint(row)) return false;
|
---|
197 | }
|
---|
198 | if (isLeaf) return true;
|
---|
199 | var correct = true;
|
---|
200 | for (var i = 0; i < noChildren; i++) correct = correct && children[i].IsCorrect();
|
---|
201 | return correct;
|
---|
202 | }
|
---|
203 |
|
---|
204 | public void GetAllIndices(int[] indices) {
|
---|
205 | GetAllIndices(indices, 0);
|
---|
206 | }
|
---|
207 |
|
---|
208 | public int GetAllIndices(int[] indices, int loc) {
|
---|
209 | // Gather indices in current quadrant
|
---|
210 | for (var i = 0; i < size; i++) indices[loc + i] = index[i];
|
---|
211 | loc += (int)size;
|
---|
212 | // Gather indices in children
|
---|
213 | if (isLeaf) return loc;
|
---|
214 | for (var i = 0; i < noChildren; i++) loc = children[i].GetAllIndices(indices, loc);
|
---|
215 | return loc;
|
---|
216 | }
|
---|
217 |
|
---|
218 | public int GetDepth() {
|
---|
219 | return isLeaf ? 1 : 1 + children.Max(x => x.GetDepth());
|
---|
220 | }
|
---|
221 |
|
---|
222 | public void ComputeNonEdgeForces(int pointIndex, double theta, double[] negF, ref double sumQ) {
|
---|
223 | // Make sure that we spend no time on empty nodes or self-interactions
|
---|
224 | if (cumulativeSize == 0 || (isLeaf && size == 1 && index[0] == pointIndex)) return;
|
---|
225 |
|
---|
226 | // Compute distance between point and center-of-mass
|
---|
227 | var D = .0;
|
---|
228 | for (var d = 0; d < dimension; d++) buff[d] = data[pointIndex, d] - centerOfMass[d];
|
---|
229 | for (var d = 0; d < dimension; d++) D += buff[d] * buff[d];
|
---|
230 |
|
---|
231 | // Check whether we can use this node as a "summary"
|
---|
232 | var maxWidth = 0.0;
|
---|
233 | for (var d = 0; d < dimension; d++) {
|
---|
234 | var curWidth = boundary.GetWidth(d);
|
---|
235 | maxWidth = (maxWidth > curWidth) ? maxWidth : curWidth;
|
---|
236 | }
|
---|
237 | if (isLeaf || maxWidth / Math.Sqrt(D) < theta) {
|
---|
238 |
|
---|
239 | // Compute and add t-SNE force between point and current node
|
---|
240 | D = 1.0 / (1.0 + D);
|
---|
241 | var mult = cumulativeSize * D;
|
---|
242 | sumQ += mult;
|
---|
243 | mult *= D;
|
---|
244 | for (var d = 0; d < dimension; d++) negF[d] += mult * buff[d];
|
---|
245 | } else {
|
---|
246 |
|
---|
247 | // Recursively apply Barnes-Hut to children
|
---|
248 | for (var i = 0; i < noChildren; i++) children[i].ComputeNonEdgeForces(pointIndex, theta, negF, ref sumQ);
|
---|
249 | }
|
---|
250 | }
|
---|
251 |
|
---|
252 | // does not use the tree
|
---|
253 | public void ComputeEdgeForces(int[] rowP, int[] colP, double[] valP, int n, double[,] posF) {
|
---|
254 | // Loop over all edges in the graph
|
---|
255 | for (var k = 0; k < n; k++) {
|
---|
256 | for (var i = rowP[k]; i < rowP[k + 1]; i++) {
|
---|
257 |
|
---|
258 | // Compute pairwise distance and Q-value
|
---|
259 | // uses squared distance
|
---|
260 | var d = 1.0;
|
---|
261 | for (var j = 0; j < dimension; j++) buff[j] = data[k, j] - data[colP[i], j];
|
---|
262 | for (var j = 0; j < dimension; j++) d += buff[j] * buff[j];
|
---|
263 | d = valP[i] / d;
|
---|
264 |
|
---|
265 | // Sum positive force
|
---|
266 | for (var j = 0; j < dimension; j++) posF[k, j] += d * buff[j];
|
---|
267 | }
|
---|
268 | }
|
---|
269 | }
|
---|
270 |
|
---|
271 | #region Helpers
|
---|
272 | private void Fill(int n) {
|
---|
273 | for (var i = 0; i < n; i++) Insert(i);
|
---|
274 | }
|
---|
275 | private void Init(SpacePartitioningTree p, double[,] inpData, IEnumerable<double> inpCorner, IEnumerable<double> inpWidth) {
|
---|
276 | parent = p;
|
---|
277 | dimension = inpData.GetLength(1);
|
---|
278 | noChildren = 2;
|
---|
279 | for (uint i = 1; i < dimension; i++) noChildren *= 2;
|
---|
280 | data = inpData;
|
---|
281 | isLeaf = true;
|
---|
282 | size = 0;
|
---|
283 | cumulativeSize = 0;
|
---|
284 | boundary = new Cell((uint)dimension);
|
---|
285 | inpCorner.ForEach((i, x) => boundary.SetCorner(i, x));
|
---|
286 | inpWidth.ForEach((i, x) => boundary.SetWidth(i, x));
|
---|
287 |
|
---|
288 | children = new SpacePartitioningTree[noChildren];
|
---|
289 | centerOfMass = new double[dimension];
|
---|
290 | buff = new double[dimension];
|
---|
291 |
|
---|
292 | }
|
---|
293 | #endregion
|
---|
294 |
|
---|
295 |
|
---|
296 | private class Cell {
|
---|
297 | private readonly uint dimension;
|
---|
298 | private readonly double[] corner;
|
---|
299 | private readonly double[] width;
|
---|
300 |
|
---|
301 | public Cell(uint inpDimension) {
|
---|
302 | dimension = inpDimension;
|
---|
303 | corner = new double[dimension];
|
---|
304 | width = new double[dimension];
|
---|
305 | }
|
---|
306 |
|
---|
307 | public double GetCorner(int d) {
|
---|
308 | return corner[d];
|
---|
309 | }
|
---|
310 | public double GetWidth(int d) {
|
---|
311 | return width[d];
|
---|
312 | }
|
---|
313 | public void SetCorner(int d, double val) {
|
---|
314 | corner[d] = val;
|
---|
315 | }
|
---|
316 | public void SetWidth(int d, double val) {
|
---|
317 | width[d] = val;
|
---|
318 | }
|
---|
319 | public bool ContainsPoint(double[] point) {
|
---|
320 | for (var d = 0; d < dimension; d++)
|
---|
321 | if (corner[d] - width[d] > point[d] || corner[d] + width[d] < point[d]) return false;
|
---|
322 | return true;
|
---|
323 | }
|
---|
324 | }
|
---|
325 | }
|
---|
326 | }
|
---|