Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/NeuralNetwork/NeuralNetworkEnsembleClassification.cs @ 9596

Last change on this file since 9596 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 12.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
34using HeuristicLab.Parameters;
35
36namespace HeuristicLab.Algorithms.DataAnalysis {
37  /// <summary>
38  /// Neural network ensemble classification data analysis algorithm.
39  /// </summary>
40  [Item("Neural Network Ensemble Classification", "Neural network ensemble classification data analysis algorithm (wrapper for ALGLIB). Further documentation: http://www.alglib.net/dataanalysis/mlpensembles.php")]
41  [Creatable("Data Analysis")]
42  [StorableClass]
43  public sealed class NeuralNetworkEnsembleClassification : FixedDataAnalysisAlgorithm<IClassificationProblem> {
44    private const string EnsembleSizeParameterName = "EnsembleSize";
45    private const string DecayParameterName = "Decay";
46    private const string HiddenLayersParameterName = "HiddenLayers";
47    private const string NodesInFirstHiddenLayerParameterName = "NodesInFirstHiddenLayer";
48    private const string NodesInSecondHiddenLayerParameterName = "NodesInSecondHiddenLayer";
49    private const string RestartsParameterName = "Restarts";
50    private const string NeuralNetworkEnsembleClassificationModelResultName = "Neural network ensemble classification solution";
51
52    #region parameter properties
53    public IFixedValueParameter<IntValue> EnsembleSizeParameter {
54      get { return (IFixedValueParameter<IntValue>)Parameters[EnsembleSizeParameterName]; }
55    }
56    public IFixedValueParameter<DoubleValue> DecayParameter {
57      get { return (IFixedValueParameter<DoubleValue>)Parameters[DecayParameterName]; }
58    }
59    public IConstrainedValueParameter<IntValue> HiddenLayersParameter {
60      get { return (IConstrainedValueParameter<IntValue>)Parameters[HiddenLayersParameterName]; }
61    }
62    public IFixedValueParameter<IntValue> NodesInFirstHiddenLayerParameter {
63      get { return (IFixedValueParameter<IntValue>)Parameters[NodesInFirstHiddenLayerParameterName]; }
64    }
65    public IFixedValueParameter<IntValue> NodesInSecondHiddenLayerParameter {
66      get { return (IFixedValueParameter<IntValue>)Parameters[NodesInSecondHiddenLayerParameterName]; }
67    }
68    public IFixedValueParameter<IntValue> RestartsParameter {
69      get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
70    }
71    #endregion
72
73    #region properties
74    public int EnsembleSize {
75      get { return EnsembleSizeParameter.Value.Value; }
76      set {
77        if (value < 1) throw new ArgumentException("The number of models in the ensemble must be positive and at least one.", "EnsembleSize");
78        EnsembleSizeParameter.Value.Value = value;
79      }
80    }
81    public double Decay {
82      get { return DecayParameter.Value.Value; }
83      set {
84        if (value < 0.001 || value > 100) throw new ArgumentException("The decay parameter should be set to a value between 0.001 and 100.", "Decay");
85        DecayParameter.Value.Value = value;
86      }
87    }
88    public int HiddenLayers {
89      get { return HiddenLayersParameter.Value.Value; }
90      set {
91        if (value < 0 || value > 2) throw new ArgumentException("The number of hidden layers should be set to 0, 1, or 2.", "HiddenLayers");
92        HiddenLayersParameter.Value = (from v in HiddenLayersParameter.ValidValues
93                                       where v.Value == value
94                                       select v)
95                                      .Single();
96      }
97    }
98    public int NodesInFirstHiddenLayer {
99      get { return NodesInFirstHiddenLayerParameter.Value.Value; }
100      set {
101        if (value < 1) throw new ArgumentException("The number of nodes in the first hidden layer must be at least one.", "NodesInFirstHiddenLayer");
102        NodesInFirstHiddenLayerParameter.Value.Value = value;
103      }
104    }
105    public int NodesInSecondHiddenLayer {
106      get { return NodesInSecondHiddenLayerParameter.Value.Value; }
107      set {
108        if (value < 1) throw new ArgumentException("The number of nodes in the first second layer must be at least one.", "NodesInSecondHiddenLayer");
109        NodesInSecondHiddenLayerParameter.Value.Value = value;
110      }
111    }
112    public int Restarts {
113      get { return RestartsParameter.Value.Value; }
114      set {
115        if (value < 0) throw new ArgumentException("The number of restarts must be positive.", "Restarts");
116        RestartsParameter.Value.Value = value;
117      }
118    }
119    #endregion
120
121
122    [StorableConstructor]
123    private NeuralNetworkEnsembleClassification(bool deserializing) : base(deserializing) { }
124    private NeuralNetworkEnsembleClassification(NeuralNetworkEnsembleClassification original, Cloner cloner)
125      : base(original, cloner) {
126    }
127    public NeuralNetworkEnsembleClassification()
128      : base() {
129        var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] {
130        (IntValue)new IntValue(0).AsReadOnly(),
131        (IntValue)new IntValue(1).AsReadOnly(),
132        (IntValue)new IntValue(2).AsReadOnly() });
133      var selectedHiddenLayerValue = (from v in validHiddenLayerValues
134                                      where v.Value == 1
135                                      select v)
136                                     .Single();
137      Parameters.Add(new FixedValueParameter<IntValue>(EnsembleSizeParameterName, "The number of simple neural network models in the ensemble. A good value is 10.", new IntValue(10)));
138      Parameters.Add(new FixedValueParameter<DoubleValue>(DecayParameterName, "The decay parameter for the training phase of the neural network. This parameter determines the strengh of regularization and should be set to a value between 0.001 (weak regularization) to 100 (very strong regularization). The correct value should be determined via cross-validation.", new DoubleValue(0.001)));
139      Parameters.Add(new ConstrainedValueParameter<IntValue>(HiddenLayersParameterName, "The number of hidden layers for the neural network (0, 1, or 2)", validHiddenLayerValues, selectedHiddenLayerValue));
140      Parameters.Add(new FixedValueParameter<IntValue>(NodesInFirstHiddenLayerParameterName, "The number of nodes in the first hidden layer. The value should be rather large (30-100 nodes) in order to make the network highly flexible and run into the early stopping criterion). This value is not used if the number of hidden layers is zero.", new IntValue(100)));
141      Parameters.Add(new FixedValueParameter<IntValue>(NodesInSecondHiddenLayerParameterName, "The number of nodes in the second hidden layer. This value is not used if the number of hidden layers is zero or one.", new IntValue(100)));
142      Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of restarts for learning.", new IntValue(2)));
143
144      HiddenLayersParameter.Hidden = true;
145      NodesInFirstHiddenLayerParameter.Hidden = true;
146      NodesInSecondHiddenLayerParameter.Hidden = true;
147      RestartsParameter.Hidden = true;
148
149      Problem = new ClassificationProblem();
150    }
151    [StorableHook(HookType.AfterDeserialization)]
152    private void AfterDeserialization() { }
153
154    public override IDeepCloneable Clone(Cloner cloner) {
155      return new NeuralNetworkEnsembleClassification(this, cloner);
156    }
157
158    #region neural network ensemble
159    protected override void Run() {
160      double rmsError, avgRelError, relClassError;
161      var solution = CreateNeuralNetworkEnsembleClassificationSolution(Problem.ProblemData, EnsembleSize, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError, out relClassError);
162      Results.Add(new Result(NeuralNetworkEnsembleClassificationModelResultName, "The neural network ensemble classification solution.", solution));
163      Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the neural network ensemble regression solution on the training set.", new DoubleValue(rmsError)));
164      Results.Add(new Result("Average relative error", "The average of relative errors of the neural network ensemble regression solution on the training set.", new PercentValue(avgRelError)));
165      Results.Add(new Result("Relative classification error", "The percentage of misclassified samples.", new PercentValue(relClassError)));
166    }
167
168    public static IClassificationSolution CreateNeuralNetworkEnsembleClassificationSolution(IClassificationProblemData problemData, int ensembleSize, int nLayers, int nHiddenNodes1, int nHiddenNodes2, double decay, int restarts,
169      out double rmsError, out double avgRelError, out double relClassError) {
170      Dataset dataset = problemData.Dataset;
171      string targetVariable = problemData.TargetVariable;
172      IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
173      IEnumerable<int> rows = problemData.TrainingIndices;
174      double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
175      if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
176        throw new NotSupportedException("Neural network ensemble classification does not support NaN or infinity values in the input dataset.");
177
178      int nRows = inputMatrix.GetLength(0);
179      int nFeatures = inputMatrix.GetLength(1) - 1;
180      double[] classValues = dataset.GetDoubleValues(targetVariable).Distinct().OrderBy(x => x).ToArray();
181      int nClasses = classValues.Count();
182      // map original class values to values [0..nClasses-1]
183      Dictionary<double, double> classIndices = new Dictionary<double, double>();
184      for (int i = 0; i < nClasses; i++) {
185        classIndices[classValues[i]] = i;
186      }
187      for (int row = 0; row < nRows; row++) {
188        inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
189      }
190
191      alglib.mlpensemble mlpEnsemble = null;
192      if (nLayers == 0) {
193        alglib.mlpecreatec0(allowedInputVariables.Count(), nClasses, ensembleSize, out mlpEnsemble);
194      } else if (nLayers == 1) {
195        alglib.mlpecreatec1(allowedInputVariables.Count(), nHiddenNodes1, nClasses, ensembleSize, out mlpEnsemble);
196      } else if (nLayers == 2) {
197        alglib.mlpecreatec2(allowedInputVariables.Count(), nHiddenNodes1, nHiddenNodes2, nClasses, ensembleSize, out mlpEnsemble);
198      } else throw new ArgumentException("Number of layers must be zero, one, or two.", "nLayers");
199      alglib.mlpreport rep;
200
201      int info;
202      alglib.mlpetraines(mlpEnsemble, inputMatrix, nRows, decay, restarts, out info, out rep);
203      if (info != 6) throw new ArgumentException("Error in calculation of neural network ensemble regression solution");
204
205      rmsError = alglib.mlpermserror(mlpEnsemble, inputMatrix, nRows);
206      avgRelError = alglib.mlpeavgrelerror(mlpEnsemble, inputMatrix, nRows);
207      relClassError = alglib.mlperelclserror(mlpEnsemble, inputMatrix, nRows);
208      var problemDataClone = (IClassificationProblemData)problemData.Clone();
209      return new NeuralNetworkEnsembleClassificationSolution(problemDataClone, new NeuralNetworkEnsembleModel(mlpEnsemble, targetVariable, allowedInputVariables, problemDataClone.ClassValues.ToArray()));
210    }
211    #endregion
212  }
213}
Note: See TracBrowser for help on using the repository browser.