1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
34 | /// <summary>
|
---|
35 | /// Neural network classification data analysis algorithm.
|
---|
36 | /// </summary>
|
---|
37 | [Item("Neural Network Classification (NN)", "Neural network classification data analysis algorithm (wrapper for ALGLIB). Further documentation: http://www.alglib.net/dataanalysis/neuralnetworks.php")]
|
---|
38 | [Creatable(CreatableAttribute.Categories.DataAnalysisClassification, Priority = 130)]
|
---|
39 | [StorableClass]
|
---|
40 | public sealed class NeuralNetworkClassification : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
41 | private const string DecayParameterName = "Decay";
|
---|
42 | private const string HiddenLayersParameterName = "HiddenLayers";
|
---|
43 | private const string NodesInFirstHiddenLayerParameterName = "NodesInFirstHiddenLayer";
|
---|
44 | private const string NodesInSecondHiddenLayerParameterName = "NodesInSecondHiddenLayer";
|
---|
45 | private const string RestartsParameterName = "Restarts";
|
---|
46 | private const string NeuralNetworkClassificationModelResultName = "Neural network classification solution";
|
---|
47 |
|
---|
48 | #region parameter properties
|
---|
49 | public IFixedValueParameter<DoubleValue> DecayParameter {
|
---|
50 | get { return (IFixedValueParameter<DoubleValue>)Parameters[DecayParameterName]; }
|
---|
51 | }
|
---|
52 | public IConstrainedValueParameter<IntValue> HiddenLayersParameter {
|
---|
53 | get { return (IConstrainedValueParameter<IntValue>)Parameters[HiddenLayersParameterName]; }
|
---|
54 | }
|
---|
55 | public IFixedValueParameter<IntValue> NodesInFirstHiddenLayerParameter {
|
---|
56 | get { return (IFixedValueParameter<IntValue>)Parameters[NodesInFirstHiddenLayerParameterName]; }
|
---|
57 | }
|
---|
58 | public IFixedValueParameter<IntValue> NodesInSecondHiddenLayerParameter {
|
---|
59 | get { return (IFixedValueParameter<IntValue>)Parameters[NodesInSecondHiddenLayerParameterName]; }
|
---|
60 | }
|
---|
61 | public IFixedValueParameter<IntValue> RestartsParameter {
|
---|
62 | get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
|
---|
63 | }
|
---|
64 | #endregion
|
---|
65 |
|
---|
66 | #region properties
|
---|
67 | public double Decay {
|
---|
68 | get { return DecayParameter.Value.Value; }
|
---|
69 | set {
|
---|
70 | if (value < 0.001 || value > 100) throw new ArgumentException("The decay parameter should be set to a value between 0.001 and 100.", "Decay");
|
---|
71 | DecayParameter.Value.Value = value;
|
---|
72 | }
|
---|
73 | }
|
---|
74 | public int HiddenLayers {
|
---|
75 | get { return HiddenLayersParameter.Value.Value; }
|
---|
76 | set {
|
---|
77 | if (value < 0 || value > 2) throw new ArgumentException("The number of hidden layers should be set to 0, 1, or 2.", "HiddenLayers");
|
---|
78 | HiddenLayersParameter.Value = (from v in HiddenLayersParameter.ValidValues
|
---|
79 | where v.Value == value
|
---|
80 | select v)
|
---|
81 | .Single();
|
---|
82 | }
|
---|
83 | }
|
---|
84 | public int NodesInFirstHiddenLayer {
|
---|
85 | get { return NodesInFirstHiddenLayerParameter.Value.Value; }
|
---|
86 | set {
|
---|
87 | if (value < 1) throw new ArgumentException("The number of nodes in the first hidden layer must be at least one.", "NodesInFirstHiddenLayer");
|
---|
88 | NodesInFirstHiddenLayerParameter.Value.Value = value;
|
---|
89 | }
|
---|
90 | }
|
---|
91 | public int NodesInSecondHiddenLayer {
|
---|
92 | get { return NodesInSecondHiddenLayerParameter.Value.Value; }
|
---|
93 | set {
|
---|
94 | if (value < 1) throw new ArgumentException("The number of nodes in the first second layer must be at least one.", "NodesInSecondHiddenLayer");
|
---|
95 | NodesInSecondHiddenLayerParameter.Value.Value = value;
|
---|
96 | }
|
---|
97 | }
|
---|
98 | public int Restarts {
|
---|
99 | get { return RestartsParameter.Value.Value; }
|
---|
100 | set {
|
---|
101 | if (value < 0) throw new ArgumentException("The number of restarts must be positive.", "Restarts");
|
---|
102 | RestartsParameter.Value.Value = value;
|
---|
103 | }
|
---|
104 | }
|
---|
105 | #endregion
|
---|
106 |
|
---|
107 |
|
---|
108 | [StorableConstructor]
|
---|
109 | private NeuralNetworkClassification(bool deserializing) : base(deserializing) { }
|
---|
110 | private NeuralNetworkClassification(NeuralNetworkClassification original, Cloner cloner)
|
---|
111 | : base(original, cloner) {
|
---|
112 | RegisterEventHandlers();
|
---|
113 | }
|
---|
114 | public NeuralNetworkClassification()
|
---|
115 | : base() {
|
---|
116 | var validHiddenLayerValues = new ItemSet<IntValue>(new IntValue[] {
|
---|
117 | (IntValue)new IntValue(0).AsReadOnly(),
|
---|
118 | (IntValue)new IntValue(1).AsReadOnly(),
|
---|
119 | (IntValue)new IntValue(2).AsReadOnly() });
|
---|
120 | var selectedHiddenLayerValue = (from v in validHiddenLayerValues
|
---|
121 | where v.Value == 1
|
---|
122 | select v)
|
---|
123 | .Single();
|
---|
124 | Parameters.Add(new FixedValueParameter<DoubleValue>(DecayParameterName, "The decay parameter for the training phase of the neural network. This parameter determines the strengh of regularization and should be set to a value between 0.001 (weak regularization) to 100 (very strong regularization). The correct value should be determined via cross-validation.", new DoubleValue(1)));
|
---|
125 | Parameters.Add(new ConstrainedValueParameter<IntValue>(HiddenLayersParameterName, "The number of hidden layers for the neural network (0, 1, or 2)", validHiddenLayerValues, selectedHiddenLayerValue));
|
---|
126 | Parameters.Add(new FixedValueParameter<IntValue>(NodesInFirstHiddenLayerParameterName, "The number of nodes in the first hidden layer. This value is not used if the number of hidden layers is zero.", new IntValue(10)));
|
---|
127 | Parameters.Add(new FixedValueParameter<IntValue>(NodesInSecondHiddenLayerParameterName, "The number of nodes in the second hidden layer. This value is not used if the number of hidden layers is zero or one.", new IntValue(10)));
|
---|
128 | Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of restarts for learning.", new IntValue(2)));
|
---|
129 |
|
---|
130 | RestartsParameter.Hidden = true;
|
---|
131 | NodesInSecondHiddenLayerParameter.Hidden = true;
|
---|
132 |
|
---|
133 | RegisterEventHandlers();
|
---|
134 |
|
---|
135 | Problem = new ClassificationProblem();
|
---|
136 | }
|
---|
137 |
|
---|
138 | private void RegisterEventHandlers() {
|
---|
139 | HiddenLayersParameter.Value.ValueChanged += HiddenLayersParameterValueValueChanged;
|
---|
140 | HiddenLayersParameter.ValueChanged += HiddenLayersParameterValueChanged;
|
---|
141 | }
|
---|
142 |
|
---|
143 | [StorableHook(HookType.AfterDeserialization)]
|
---|
144 | private void AfterDeserialization() {
|
---|
145 | RegisterEventHandlers();
|
---|
146 | }
|
---|
147 |
|
---|
148 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
149 | return new NeuralNetworkClassification(this, cloner);
|
---|
150 | }
|
---|
151 | private void HiddenLayersParameterValueChanged(object source, EventArgs e) {
|
---|
152 | HiddenLayersParameter.Value.ValueChanged += HiddenLayersParameterValueValueChanged;
|
---|
153 | HiddenLayersParameterValueValueChanged(this, EventArgs.Empty);
|
---|
154 | }
|
---|
155 |
|
---|
156 | private void HiddenLayersParameterValueValueChanged(object source, EventArgs e) {
|
---|
157 | if (HiddenLayers == 0) {
|
---|
158 | NodesInFirstHiddenLayerParameter.Hidden = true;
|
---|
159 | NodesInSecondHiddenLayerParameter.Hidden = true;
|
---|
160 | } else if (HiddenLayers == 1) {
|
---|
161 | NodesInFirstHiddenLayerParameter.Hidden = false;
|
---|
162 | NodesInSecondHiddenLayerParameter.Hidden = true;
|
---|
163 | } else {
|
---|
164 | NodesInFirstHiddenLayerParameter.Hidden = false;
|
---|
165 | NodesInSecondHiddenLayerParameter.Hidden = false;
|
---|
166 | }
|
---|
167 | }
|
---|
168 |
|
---|
169 | #region neural network
|
---|
170 | protected override void Run() {
|
---|
171 | double rmsError, avgRelError, relClassError;
|
---|
172 | var solution = CreateNeuralNetworkClassificationSolution(Problem.ProblemData, HiddenLayers, NodesInFirstHiddenLayer, NodesInSecondHiddenLayer, Decay, Restarts, out rmsError, out avgRelError, out relClassError);
|
---|
173 | Results.Add(new Result(NeuralNetworkClassificationModelResultName, "The neural network classification solution.", solution));
|
---|
174 | Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the neural network classification solution on the training set.", new DoubleValue(rmsError)));
|
---|
175 | Results.Add(new Result("Average relative error", "The average of relative errors of the neural network classification solution on the training set.", new PercentValue(avgRelError)));
|
---|
176 | Results.Add(new Result("Relative classification error", "The percentage of misclassified samples.", new PercentValue(relClassError)));
|
---|
177 | }
|
---|
178 |
|
---|
179 | public static IClassificationSolution CreateNeuralNetworkClassificationSolution(IClassificationProblemData problemData, int nLayers, int nHiddenNodes1, int nHiddenNodes2, double decay, int restarts,
|
---|
180 | out double rmsError, out double avgRelError, out double relClassError) {
|
---|
181 | var dataset = problemData.Dataset;
|
---|
182 | string targetVariable = problemData.TargetVariable;
|
---|
183 | IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
|
---|
184 | IEnumerable<int> rows = problemData.TrainingIndices;
|
---|
185 | double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
|
---|
186 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
187 | throw new NotSupportedException("Neural network classification does not support NaN or infinity values in the input dataset.");
|
---|
188 |
|
---|
189 | int nRows = inputMatrix.GetLength(0);
|
---|
190 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
191 | double[] classValues = dataset.GetDoubleValues(targetVariable).Distinct().OrderBy(x => x).ToArray();
|
---|
192 | int nClasses = classValues.Count();
|
---|
193 | // map original class values to values [0..nClasses-1]
|
---|
194 | Dictionary<double, double> classIndices = new Dictionary<double, double>();
|
---|
195 | for (int i = 0; i < nClasses; i++) {
|
---|
196 | classIndices[classValues[i]] = i;
|
---|
197 | }
|
---|
198 | for (int row = 0; row < nRows; row++) {
|
---|
199 | inputMatrix[row, nFeatures] = classIndices[inputMatrix[row, nFeatures]];
|
---|
200 | }
|
---|
201 |
|
---|
202 | alglib.multilayerperceptron multiLayerPerceptron = null;
|
---|
203 | if (nLayers == 0) {
|
---|
204 | alglib.mlpcreatec0(allowedInputVariables.Count(), nClasses, out multiLayerPerceptron);
|
---|
205 | } else if (nLayers == 1) {
|
---|
206 | alglib.mlpcreatec1(allowedInputVariables.Count(), nHiddenNodes1, nClasses, out multiLayerPerceptron);
|
---|
207 | } else if (nLayers == 2) {
|
---|
208 | alglib.mlpcreatec2(allowedInputVariables.Count(), nHiddenNodes1, nHiddenNodes2, nClasses, out multiLayerPerceptron);
|
---|
209 | } else throw new ArgumentException("Number of layers must be zero, one, or two.", "nLayers");
|
---|
210 | alglib.mlpreport rep;
|
---|
211 |
|
---|
212 | int info;
|
---|
213 | // using mlptrainlm instead of mlptraines or mlptrainbfgs because only one parameter is necessary
|
---|
214 | alglib.mlptrainlm(multiLayerPerceptron, inputMatrix, nRows, decay, restarts, out info, out rep);
|
---|
215 | if (info != 2) throw new ArgumentException("Error in calculation of neural network classification solution");
|
---|
216 |
|
---|
217 | rmsError = alglib.mlprmserror(multiLayerPerceptron, inputMatrix, nRows);
|
---|
218 | avgRelError = alglib.mlpavgrelerror(multiLayerPerceptron, inputMatrix, nRows);
|
---|
219 | relClassError = alglib.mlpclserror(multiLayerPerceptron, inputMatrix, nRows) / (double)nRows;
|
---|
220 |
|
---|
221 | var problemDataClone = (IClassificationProblemData)problemData.Clone();
|
---|
222 | return new NeuralNetworkClassificationSolution(new NeuralNetworkModel(multiLayerPerceptron, targetVariable, allowedInputVariables, problemDataClone.ClassValues.ToArray()), problemDataClone);
|
---|
223 | }
|
---|
224 | #endregion
|
---|
225 | }
|
---|
226 | }
|
---|