[6577] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6577] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
[8465] | 28 | using HeuristicLab.Parameters;
|
---|
[6577] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 33 | /// <summary>
|
---|
[6583] | 34 | /// Nearest neighbour classification data analysis algorithm.
|
---|
[6577] | 35 | /// </summary>
|
---|
[6583] | 36 | [Item("Nearest Neighbour Classification", "Nearest neighbour classification data analysis algorithm (wrapper for ALGLIB).")]
|
---|
[6577] | 37 | [Creatable("Data Analysis")]
|
---|
| 38 | [StorableClass]
|
---|
[6583] | 39 | public sealed class NearestNeighbourClassification : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
| 40 | private const string KParameterName = "K";
|
---|
| 41 | private const string NearestNeighbourClassificationModelResultName = "Nearest neighbour classification solution";
|
---|
[6578] | 42 |
|
---|
| 43 | #region parameter properties
|
---|
[6583] | 44 | public IFixedValueParameter<IntValue> KParameter {
|
---|
| 45 | get { return (IFixedValueParameter<IntValue>)Parameters[KParameterName]; }
|
---|
[6578] | 46 | }
|
---|
| 47 | #endregion
|
---|
| 48 | #region properties
|
---|
[6583] | 49 | public int K {
|
---|
| 50 | get { return KParameter.Value.Value; }
|
---|
[6578] | 51 | set {
|
---|
[6583] | 52 | if (value <= 0) throw new ArgumentException("K must be larger than zero.", "K");
|
---|
| 53 | else KParameter.Value.Value = value;
|
---|
[6578] | 54 | }
|
---|
| 55 | }
|
---|
| 56 | #endregion
|
---|
| 57 |
|
---|
[6577] | 58 | [StorableConstructor]
|
---|
[6583] | 59 | private NearestNeighbourClassification(bool deserializing) : base(deserializing) { }
|
---|
| 60 | private NearestNeighbourClassification(NearestNeighbourClassification original, Cloner cloner)
|
---|
[6577] | 61 | : base(original, cloner) {
|
---|
| 62 | }
|
---|
[6583] | 63 | public NearestNeighbourClassification()
|
---|
[6577] | 64 | : base() {
|
---|
[6583] | 65 | Parameters.Add(new FixedValueParameter<IntValue>(KParameterName, "The number of nearest neighbours to consider for regression.", new IntValue(3)));
|
---|
| 66 | Problem = new ClassificationProblem();
|
---|
[6577] | 67 | }
|
---|
| 68 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 69 | private void AfterDeserialization() { }
|
---|
| 70 |
|
---|
| 71 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[6583] | 72 | return new NearestNeighbourClassification(this, cloner);
|
---|
[6577] | 73 | }
|
---|
| 74 |
|
---|
[6583] | 75 | #region nearest neighbour
|
---|
[6577] | 76 | protected override void Run() {
|
---|
[6583] | 77 | var solution = CreateNearestNeighbourClassificationSolution(Problem.ProblemData, K);
|
---|
| 78 | Results.Add(new Result(NearestNeighbourClassificationModelResultName, "The nearest neighbour classification solution.", solution));
|
---|
[6577] | 79 | }
|
---|
| 80 |
|
---|
[6583] | 81 | public static IClassificationSolution CreateNearestNeighbourClassificationSolution(IClassificationProblemData problemData, int k) {
|
---|
[8465] | 82 | var problemDataClone = (IClassificationProblemData)problemData.Clone();
|
---|
| 83 | return new NearestNeighbourClassificationSolution(problemDataClone, Train(problemDataClone, k));
|
---|
| 84 | }
|
---|
[6577] | 85 |
|
---|
[8465] | 86 | public static INearestNeighbourModel Train(IClassificationProblemData problemData, int k) {
|
---|
| 87 | return new NearestNeighbourModel(problemData.Dataset,
|
---|
| 88 | problemData.TrainingIndices,
|
---|
| 89 | k,
|
---|
| 90 | problemData.TargetVariable,
|
---|
| 91 | problemData.AllowedInputVariables,
|
---|
| 92 | problemData.ClassValues.ToArray());
|
---|
[6577] | 93 | }
|
---|
| 94 | #endregion
|
---|
| 95 | }
|
---|
| 96 | }
|
---|