[9270] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 29 | using HeuristicLab.Operators;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 35 | [Item("NcaGradientCalculator", "Calculates the quality and gradient of a certain NCA matrix.")]
|
---|
| 36 | [StorableClass]
|
---|
| 37 | public class NcaGradientCalculator : SingleSuccessorOperator {
|
---|
| 38 |
|
---|
| 39 | #region Parameter Properties
|
---|
| 40 | public ILookupParameter<IntValue> DimensionsParameter {
|
---|
| 41 | get { return (ILookupParameter<IntValue>)Parameters["Dimensions"]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public ILookupParameter<IntValue> NeighborSamplesParameter {
|
---|
| 45 | get { return (ILookupParameter<IntValue>)Parameters["NeighborSamples"]; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | public ILookupParameter<DoubleValue> RegularizationParameter {
|
---|
| 49 | get { return (ILookupParameter<DoubleValue>)Parameters["Regularization"]; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public ILookupParameter<RealVector> NcaMatrixParameter {
|
---|
| 53 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrix"]; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public ILookupParameter<RealVector> NcaMatrixGradientsParameter {
|
---|
| 57 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrixGradients"]; }
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
| 61 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
| 65 | get { return (ILookupParameter<IClassificationProblemData>)Parameters["ProblemData"]; }
|
---|
| 66 | }
|
---|
| 67 | #endregion
|
---|
| 68 |
|
---|
| 69 | [StorableConstructor]
|
---|
| 70 | protected NcaGradientCalculator(bool deserializing) : base(deserializing) { }
|
---|
| 71 | protected NcaGradientCalculator(NcaGradientCalculator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 72 | public NcaGradientCalculator()
|
---|
| 73 | : base() {
|
---|
| 74 | Parameters.Add(new LookupParameter<IntValue>("Dimensions", "The dimensions to which the feature space should be reduced to."));
|
---|
| 75 | Parameters.Add(new LookupParameter<IntValue>("NeighborSamples", "The number of neighbors that should be taken into account at maximum."));
|
---|
| 76 | Parameters.Add(new LookupParameter<DoubleValue>("Regularization", "The regularization term that constrains the expansion of the projected space."));
|
---|
| 77 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrix", "The optimized matrix."));
|
---|
| 78 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrixGradients", "The gradients from the matrix that is being optimized."));
|
---|
| 79 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality of the current matrix."));
|
---|
| 80 | Parameters.Add(new LookupParameter<IClassificationProblemData>("ProblemData", "The classification problem data."));
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 84 | return new NcaGradientCalculator(this, cloner);
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | public override IOperation Apply() {
|
---|
| 88 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 89 | var dimensions = DimensionsParameter.ActualValue.Value;
|
---|
| 90 | var neighborSamples = NeighborSamplesParameter.ActualValue.Value;
|
---|
| 91 | var regularization = RegularizationParameter.ActualValue.Value;
|
---|
| 92 |
|
---|
| 93 | var vector = NcaMatrixParameter.ActualValue;
|
---|
| 94 | var gradients = NcaMatrixGradientsParameter.ActualValue;
|
---|
| 95 | if (gradients == null) {
|
---|
| 96 | gradients = new RealVector(vector.Length);
|
---|
| 97 | NcaMatrixGradientsParameter.ActualValue = gradients;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
[9272] | 100 | var data = AlglibUtil.PrepareInputMatrix(problemData.Dataset, problemData.AllowedInputVariables,
|
---|
| 101 | problemData.TrainingIndices);
|
---|
[9270] | 102 | var classes = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
|
---|
| 103 |
|
---|
| 104 | var quality = Gradient(vector, gradients, data, classes, dimensions, neighborSamples, regularization);
|
---|
| 105 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
| 106 |
|
---|
| 107 | return base.Apply();
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | private static double Gradient(RealVector A, RealVector grad, double[,] data, double[] classes, int dimensions, int neighborSamples, double regularization) {
|
---|
| 111 | var instances = data.GetLength(0);
|
---|
| 112 | var attributes = data.GetLength(1);
|
---|
| 113 |
|
---|
| 114 | var AMatrix = new Matrix(A, A.Length / dimensions, dimensions);
|
---|
| 115 |
|
---|
| 116 | alglib.sparsematrix probabilities;
|
---|
| 117 | alglib.sparsecreate(instances, instances, out probabilities);
|
---|
| 118 | var transformedDistances = new Dictionary<int, double>(instances);
|
---|
| 119 | for (int i = 0; i < instances; i++) {
|
---|
| 120 | var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
|
---|
| 121 | for (int k = 0; k < instances; k++) {
|
---|
| 122 | if (k == i) {
|
---|
| 123 | transformedDistances.Remove(k);
|
---|
| 124 | continue;
|
---|
| 125 | }
|
---|
| 126 | var kVector = new Matrix(GetRow(data, k));
|
---|
| 127 | transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SumOfSquares());
|
---|
| 128 | }
|
---|
| 129 | var normalization = transformedDistances.Sum(x => x.Value);
|
---|
| 130 | if (normalization <= 0) continue;
|
---|
| 131 | foreach (var s in transformedDistances.Where(x => x.Value > 0).OrderByDescending(x => x.Value).Take(neighborSamples)) {
|
---|
| 132 | alglib.sparseset(probabilities, i, s.Key, s.Value / normalization);
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
|
---|
| 136 |
|
---|
| 137 | int t0 = 0, t1 = 0, r, c;
|
---|
| 138 | double val;
|
---|
| 139 | var pi = new double[instances];
|
---|
| 140 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
| 141 | if (classes[r].IsAlmost(classes[c])) {
|
---|
| 142 | pi[r] += val;
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | var innerSum = new double[attributes, attributes];
|
---|
| 147 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
| 148 | var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
|
---|
| 149 | vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
|
---|
| 150 |
|
---|
| 151 | if (classes[r].IsAlmost(classes[c])) {
|
---|
| 152 | vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
|
---|
| 153 | }
|
---|
| 154 | }
|
---|
| 155 |
|
---|
| 156 | var func = -pi.Sum() + regularization * AMatrix.SumOfSquares();
|
---|
| 157 |
|
---|
| 158 | r = 0;
|
---|
| 159 | var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
|
---|
| 160 | foreach (var g in newGrad) {
|
---|
| 161 | grad[r] = g + regularization * 2 * A[r];
|
---|
| 162 | r++;
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | return func;
|
---|
| 166 | }
|
---|
| 167 |
|
---|
| 168 | private static IEnumerable<double> GetRow(double[,] data, int row) {
|
---|
| 169 | for (int i = 0; i < data.GetLength(1); i++)
|
---|
| 170 | yield return data[row, i];
|
---|
| 171 | }
|
---|
| 172 | }
|
---|
| 173 | } |
---|