1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Analysis;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.PluginInfrastructure;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
37 | internal delegate void Reporter(double quality, double[] coefficients, double[] gradients);
|
---|
38 | /// <summary>
|
---|
39 | /// Neighborhood Components Analysis
|
---|
40 | /// </summary>
|
---|
41 | [Item("Neighborhood Components Analysis (NCA)", @"Implementation of Neighborhood Components Analysis
|
---|
42 | based on the description of J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov. 2005.
|
---|
43 | Neighbourhood Component Analysis. Advances in Neural Information Processing Systems, 17. pp. 513-520
|
---|
44 | with additional regularizations described in Z. Yang, J. Laaksonen. 2007.
|
---|
45 | Regularized Neighborhood Component Analysis. Lecture Notes in Computer Science, 4522. pp. 253-262.")]
|
---|
46 | [Creatable("Data Analysis")]
|
---|
47 | [StorableClass]
|
---|
48 | public sealed class NcaAlgorithm : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
49 | #region Parameter Properties
|
---|
50 | public IFixedValueParameter<IntValue> KParameter {
|
---|
51 | get { return (IFixedValueParameter<IntValue>)Parameters["K"]; }
|
---|
52 | }
|
---|
53 | public IFixedValueParameter<IntValue> DimensionsParameter {
|
---|
54 | get { return (IFixedValueParameter<IntValue>)Parameters["Dimensions"]; }
|
---|
55 | }
|
---|
56 | public IConstrainedValueParameter<INCAInitializer> InitializationParameter {
|
---|
57 | get { return (IConstrainedValueParameter<INCAInitializer>)Parameters["Initialization"]; }
|
---|
58 | }
|
---|
59 | public IFixedValueParameter<IntValue> NeighborSamplesParameter {
|
---|
60 | get { return (IFixedValueParameter<IntValue>)Parameters["NeighborSamples"]; }
|
---|
61 | }
|
---|
62 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
63 | get { return (IFixedValueParameter<IntValue>)Parameters["Iterations"]; }
|
---|
64 | }
|
---|
65 | public IFixedValueParameter<DoubleValue> RegularizationParameter {
|
---|
66 | get { return (IFixedValueParameter<DoubleValue>)Parameters["Regularization"]; }
|
---|
67 | }
|
---|
68 | #endregion
|
---|
69 |
|
---|
70 | #region Properties
|
---|
71 | public int K {
|
---|
72 | get { return KParameter.Value.Value; }
|
---|
73 | set { KParameter.Value.Value = value; }
|
---|
74 | }
|
---|
75 | public int Dimensions {
|
---|
76 | get { return DimensionsParameter.Value.Value; }
|
---|
77 | set { DimensionsParameter.Value.Value = value; }
|
---|
78 | }
|
---|
79 | public int NeighborSamples {
|
---|
80 | get { return NeighborSamplesParameter.Value.Value; }
|
---|
81 | set { NeighborSamplesParameter.Value.Value = value; }
|
---|
82 | }
|
---|
83 | public int Iterations {
|
---|
84 | get { return IterationsParameter.Value.Value; }
|
---|
85 | set { IterationsParameter.Value.Value = value; }
|
---|
86 | }
|
---|
87 | public double Regularization {
|
---|
88 | get { return RegularizationParameter.Value.Value; }
|
---|
89 | set { RegularizationParameter.Value.Value = value; }
|
---|
90 | }
|
---|
91 | #endregion
|
---|
92 |
|
---|
93 | [StorableConstructor]
|
---|
94 | private NcaAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
95 | private NcaAlgorithm(NcaAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
96 | public NcaAlgorithm()
|
---|
97 | : base() {
|
---|
98 | Parameters.Add(new FixedValueParameter<IntValue>("K", "The K for the nearest neighbor.", new IntValue(3)));
|
---|
99 | Parameters.Add(new FixedValueParameter<IntValue>("Dimensions", "The number of dimensions that NCA should reduce the data to.", new IntValue(2)));
|
---|
100 | Parameters.Add(new ConstrainedValueParameter<INCAInitializer>("Initialization", "Which method should be used to initialize the matrix. Typically LDA (linear discriminant analysis) should provide a good estimate."));
|
---|
101 | Parameters.Add(new FixedValueParameter<IntValue>("NeighborSamples", "How many of the neighbors should be sampled in order to speed up the calculation. This should be at least the value of k and at most the number of training instances minus one.", new IntValue(60)));
|
---|
102 | Parameters.Add(new FixedValueParameter<IntValue>("Iterations", "How many iterations the conjugate gradient (CG) method should be allowed to perform. The method might still terminate earlier if a local optima has already been reached.", new IntValue(50)));
|
---|
103 | Parameters.Add(new FixedValueParameter<DoubleValue>("Regularization", "A non-negative paramter which can be set to increase generalization and avoid overfitting. If set to 0 the algorithm is similar to NCA as proposed by Goldberger et al.", new DoubleValue(0)));
|
---|
104 |
|
---|
105 | INCAInitializer defaultInitializer = null;
|
---|
106 | foreach (var initializer in ApplicationManager.Manager.GetInstances<INCAInitializer>().OrderBy(x => x.ItemName)) {
|
---|
107 | if (initializer is LDAInitializer) defaultInitializer = initializer;
|
---|
108 | InitializationParameter.ValidValues.Add(initializer);
|
---|
109 | }
|
---|
110 | if (defaultInitializer != null) InitializationParameter.Value = defaultInitializer;
|
---|
111 |
|
---|
112 | Problem = new ClassificationProblem();
|
---|
113 | }
|
---|
114 |
|
---|
115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
116 | return new NcaAlgorithm(this, cloner);
|
---|
117 | }
|
---|
118 |
|
---|
119 | [StorableHook(HookType.AfterDeserialization)]
|
---|
120 | private void AfterDeserialization() {
|
---|
121 | if (!Parameters.ContainsKey("Regularization")) {
|
---|
122 | Parameters.Add(new FixedValueParameter<DoubleValue>("Regularization", "A non-negative paramter which can be set to increase generalization and avoid overfitting. If set to 0 the algorithm is similar to NCA as proposed by Goldberger et al.", new DoubleValue(0)));
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | public override void Prepare() {
|
---|
127 | if (Problem != null) base.Prepare();
|
---|
128 | }
|
---|
129 |
|
---|
130 | protected override void Run() {
|
---|
131 | var initializer = InitializationParameter.Value;
|
---|
132 |
|
---|
133 | var clonedProblem = (IClassificationProblemData)Problem.ProblemData.Clone();
|
---|
134 | var model = Train(clonedProblem, K, Dimensions, NeighborSamples, Regularization, Iterations, initializer.Initialize(clonedProblem, Dimensions), ReportQuality, CancellationToken.None);
|
---|
135 | var solution = model.CreateClassificationSolution(clonedProblem);
|
---|
136 | if (!Results.ContainsKey("ClassificationSolution"))
|
---|
137 | Results.Add(new Result("ClassificationSolution", "The classification solution.", solution));
|
---|
138 | else Results["ClassificationSolution"].Value = solution;
|
---|
139 | }
|
---|
140 |
|
---|
141 | public static INcaClassificationSolution CreateClassificationSolution(IClassificationProblemData data, int k, int dimensions, int neighborSamples, double regularization, int iterations, INCAInitializer initializer) {
|
---|
142 | var clonedProblem = (IClassificationProblemData)data.Clone();
|
---|
143 | var model = Train(clonedProblem, k, dimensions, neighborSamples, regularization, iterations, initializer);
|
---|
144 | return model.CreateClassificationSolution(clonedProblem);
|
---|
145 | }
|
---|
146 |
|
---|
147 | public static INcaModel Train(IClassificationProblemData problemData, int k, int dimensions, int neighborSamples, double regularization, int iterations, INCAInitializer initializer) {
|
---|
148 | return Train(problemData, k, dimensions, neighborSamples, regularization, iterations, initializer.Initialize(problemData, dimensions), null, CancellationToken.None);
|
---|
149 | }
|
---|
150 |
|
---|
151 | public static INcaModel Train(IClassificationProblemData problemData, int k, int neighborSamples, double regularization, int iterations, double[,] initalMatrix) {
|
---|
152 | var matrix = new double[initalMatrix.Length];
|
---|
153 | for (int i = 0; i < initalMatrix.GetLength(0); i++)
|
---|
154 | for (int j = 0; j < initalMatrix.GetLength(1); j++)
|
---|
155 | matrix[i * initalMatrix.GetLength(1) + j] = initalMatrix[i, j];
|
---|
156 | return Train(problemData, k, initalMatrix.GetLength(1), neighborSamples, regularization, iterations, matrix, null, CancellationToken.None);
|
---|
157 | }
|
---|
158 |
|
---|
159 | private static INcaModel Train(IClassificationProblemData data, int k, int dimensions, int neighborSamples, double regularization, int iterations, double[] matrix, Reporter reporter, CancellationToken cancellation) {
|
---|
160 | var scaling = new Scaling(data.Dataset, data.AllowedInputVariables, data.TrainingIndices);
|
---|
161 | var scaledData = AlglibUtil.PrepareAndScaleInputMatrix(data.Dataset, data.AllowedInputVariables, data.TrainingIndices, scaling);
|
---|
162 | var classes = data.Dataset.GetDoubleValues(data.TargetVariable, data.TrainingIndices).ToArray();
|
---|
163 | var attributes = scaledData.GetLength(1);
|
---|
164 |
|
---|
165 | alglib.mincgstate state;
|
---|
166 | alglib.mincgreport rep;
|
---|
167 | alglib.mincgcreate(matrix, out state);
|
---|
168 | alglib.mincgsetcond(state, 0, 0, 0, iterations);
|
---|
169 | alglib.mincgsetxrep(state, true);
|
---|
170 | //alglib.mincgsetgradientcheck(state, 0.01);
|
---|
171 | int neighborSampleSize = neighborSamples;
|
---|
172 | Optimize(state, scaledData, classes, dimensions, neighborSampleSize, regularization, cancellation, reporter);
|
---|
173 | alglib.mincgresults(state, out matrix, out rep);
|
---|
174 | if (rep.terminationtype == -7) throw new InvalidOperationException("Gradient verification failed.");
|
---|
175 |
|
---|
176 | var transformationMatrix = new double[attributes, dimensions];
|
---|
177 | var counter = 0;
|
---|
178 | for (var i = 0; i < attributes; i++)
|
---|
179 | for (var j = 0; j < dimensions; j++)
|
---|
180 | transformationMatrix[i, j] = matrix[counter++];
|
---|
181 |
|
---|
182 | return new NcaModel(k, transformationMatrix, data.Dataset, data.TrainingIndices, data.TargetVariable, data.AllowedInputVariables, scaling, data.ClassValues.ToArray());
|
---|
183 | }
|
---|
184 |
|
---|
185 | private static void Optimize(alglib.mincgstate state, double[,] data, double[] classes, int dimensions, int neighborSampleSize, double lambda, CancellationToken cancellation, Reporter reporter) {
|
---|
186 | while (alglib.mincgiteration(state)) {
|
---|
187 | if (cancellation.IsCancellationRequested) break;
|
---|
188 | if (state.needfg) {
|
---|
189 | Gradient(state.x, ref state.innerobj.f, state.innerobj.g, data, classes, dimensions, neighborSampleSize, lambda);
|
---|
190 | continue;
|
---|
191 | }
|
---|
192 | if (state.innerobj.xupdated) {
|
---|
193 | if (reporter != null)
|
---|
194 | reporter(state.innerobj.f, state.innerobj.x, state.innerobj.g);
|
---|
195 | continue;
|
---|
196 | }
|
---|
197 | throw new InvalidOperationException("Neighborhood Components Analysis: Error in Optimize() (some derivatives were not provided?)");
|
---|
198 | }
|
---|
199 | }
|
---|
200 |
|
---|
201 | private static void Gradient(double[] A, ref double func, double[] grad, double[,] data, double[] classes, int dimensions, int neighborSampleSize, double lambda) {
|
---|
202 | var instances = data.GetLength(0);
|
---|
203 | var attributes = data.GetLength(1);
|
---|
204 |
|
---|
205 | var AMatrix = new Matrix(A, A.Length / dimensions, dimensions);
|
---|
206 |
|
---|
207 | alglib.sparsematrix probabilities;
|
---|
208 | alglib.sparsecreate(instances, instances, out probabilities);
|
---|
209 | var transformedDistances = new Dictionary<int, double>(instances);
|
---|
210 | for (int i = 0; i < instances; i++) {
|
---|
211 | var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
|
---|
212 | for (int k = 0; k < instances; k++) {
|
---|
213 | if (k == i) {
|
---|
214 | transformedDistances.Remove(k);
|
---|
215 | continue;
|
---|
216 | }
|
---|
217 | var kVector = new Matrix(GetRow(data, k));
|
---|
218 | transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SumOfSquares());
|
---|
219 | }
|
---|
220 | var normalization = transformedDistances.Sum(x => x.Value);
|
---|
221 | if (normalization <= 0) continue;
|
---|
222 | foreach (var s in transformedDistances.Where(x => x.Value > 0).OrderByDescending(x => x.Value).Take(neighborSampleSize)) {
|
---|
223 | alglib.sparseset(probabilities, i, s.Key, s.Value / normalization);
|
---|
224 | }
|
---|
225 | }
|
---|
226 | alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
|
---|
227 |
|
---|
228 | int t0 = 0, t1 = 0, r, c;
|
---|
229 | double val;
|
---|
230 | var pi = new double[instances];
|
---|
231 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
232 | if (classes[r].IsAlmost(classes[c])) {
|
---|
233 | pi[r] += val;
|
---|
234 | }
|
---|
235 | }
|
---|
236 |
|
---|
237 | var innerSum = new double[attributes, attributes];
|
---|
238 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
239 | var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
|
---|
240 | vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
|
---|
241 |
|
---|
242 | if (classes[r].IsAlmost(classes[c])) {
|
---|
243 | vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
|
---|
244 | }
|
---|
245 | }
|
---|
246 |
|
---|
247 | func = -pi.Sum() + lambda * AMatrix.SumOfSquares();
|
---|
248 |
|
---|
249 | r = 0;
|
---|
250 | var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
|
---|
251 | foreach (var g in newGrad) {
|
---|
252 | grad[r] = g + lambda * 2 * A[r];
|
---|
253 | r++;
|
---|
254 | }
|
---|
255 | }
|
---|
256 |
|
---|
257 | private void ReportQuality(double func, double[] coefficients, double[] gradients) {
|
---|
258 | var instances = Problem.ProblemData.TrainingIndices.Count();
|
---|
259 | DataTable qualities;
|
---|
260 | if (!Results.ContainsKey("Optimization")) {
|
---|
261 | qualities = new DataTable("Optimization");
|
---|
262 | qualities.Rows.Add(new DataRow("Quality", string.Empty));
|
---|
263 | Results.Add(new Result("Optimization", qualities));
|
---|
264 | } else qualities = (DataTable)Results["Optimization"].Value;
|
---|
265 | qualities.Rows["Quality"].Values.Add(-func / instances);
|
---|
266 |
|
---|
267 | string[] attributNames = Problem.ProblemData.AllowedInputVariables.ToArray();
|
---|
268 | if (gradients != null) {
|
---|
269 | DataTable grads;
|
---|
270 | if (!Results.ContainsKey("Gradients")) {
|
---|
271 | grads = new DataTable("Gradients");
|
---|
272 | for (int i = 0; i < gradients.Length; i++)
|
---|
273 | grads.Rows.Add(new DataRow(attributNames[i / Dimensions] + "-" + (i % Dimensions), string.Empty));
|
---|
274 | Results.Add(new Result("Gradients", grads));
|
---|
275 | } else grads = (DataTable)Results["Gradients"].Value;
|
---|
276 | for (int i = 0; i < gradients.Length; i++)
|
---|
277 | grads.Rows[attributNames[i / Dimensions] + "-" + (i % Dimensions)].Values.Add(gradients[i]);
|
---|
278 | }
|
---|
279 |
|
---|
280 | if (!Results.ContainsKey("Quality")) {
|
---|
281 | Results.Add(new Result("Quality", new DoubleValue(-func / instances)));
|
---|
282 | } else ((DoubleValue)Results["Quality"].Value).Value = -func / instances;
|
---|
283 |
|
---|
284 | var attributes = attributNames.Length;
|
---|
285 | var transformationMatrix = new double[attributes, Dimensions];
|
---|
286 | var counter = 0;
|
---|
287 | for (var i = 0; i < attributes; i++)
|
---|
288 | for (var j = 0; j < Dimensions; j++)
|
---|
289 | transformationMatrix[i, j] = coefficients[counter++];
|
---|
290 |
|
---|
291 | var scaling = new Scaling(Problem.ProblemData.Dataset, attributNames, Problem.ProblemData.TrainingIndices);
|
---|
292 | var model = new NcaModel(K, transformationMatrix, Problem.ProblemData.Dataset, Problem.ProblemData.TrainingIndices, Problem.ProblemData.TargetVariable, attributNames, scaling, Problem.ProblemData.ClassValues.ToArray());
|
---|
293 |
|
---|
294 | IClassificationSolution solution = model.CreateClassificationSolution(Problem.ProblemData);
|
---|
295 | if (!Results.ContainsKey("ClassificationSolution")) {
|
---|
296 | Results.Add(new Result("ClassificationSolution", solution));
|
---|
297 | } else {
|
---|
298 | Results["ClassificationSolution"].Value = solution;
|
---|
299 | }
|
---|
300 | }
|
---|
301 |
|
---|
302 | private static IEnumerable<double> GetRow(double[,] data, int row) {
|
---|
303 | for (int i = 0; i < data.GetLength(1); i++)
|
---|
304 | yield return data[row, i];
|
---|
305 | }
|
---|
306 |
|
---|
307 | }
|
---|
308 | }
|
---|