[8466] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Threading;
|
---|
| 26 | using HeuristicLab.Analysis;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.PluginInfrastructure;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 35 |
|
---|
[8471] | 36 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8681] | 37 | internal delegate void Reporter(double quality, double[] coefficients, double[] gradients);
|
---|
[8466] | 38 | /// <summary>
|
---|
| 39 | /// Neighborhood Components Analysis
|
---|
| 40 | /// </summary>
|
---|
[8681] | 41 | [Item("Neighborhood Components Analysis (NCA)", @"Implementation of Neighborhood Components Analysis
|
---|
| 42 | based on the description of J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov. 2005.
|
---|
| 43 | Neighbourhood Component Analysis. Advances in Neural Information Processing Systems, 17. pp. 513-520
|
---|
| 44 | with additional regularizations described in Z. Yang, J. Laaksonen. 2007.
|
---|
| 45 | Regularized Neighborhood Component Analysis. Lecture Notes in Computer Science, 4522. pp. 253-262.")]
|
---|
[8466] | 46 | [Creatable("Data Analysis")]
|
---|
| 47 | [StorableClass]
|
---|
| 48 | public sealed class NcaAlgorithm : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
| 49 | #region Parameter Properties
|
---|
[8470] | 50 | public IFixedValueParameter<IntValue> KParameter {
|
---|
| 51 | get { return (IFixedValueParameter<IntValue>)Parameters["K"]; }
|
---|
[8466] | 52 | }
|
---|
| 53 | public IFixedValueParameter<IntValue> DimensionsParameter {
|
---|
| 54 | get { return (IFixedValueParameter<IntValue>)Parameters["Dimensions"]; }
|
---|
| 55 | }
|
---|
| 56 | public IConstrainedValueParameter<INCAInitializer> InitializationParameter {
|
---|
| 57 | get { return (IConstrainedValueParameter<INCAInitializer>)Parameters["Initialization"]; }
|
---|
| 58 | }
|
---|
| 59 | public IFixedValueParameter<IntValue> NeighborSamplesParameter {
|
---|
| 60 | get { return (IFixedValueParameter<IntValue>)Parameters["NeighborSamples"]; }
|
---|
| 61 | }
|
---|
| 62 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
| 63 | get { return (IFixedValueParameter<IntValue>)Parameters["Iterations"]; }
|
---|
| 64 | }
|
---|
[8681] | 65 | public IFixedValueParameter<DoubleValue> RegularizationParameter {
|
---|
| 66 | get { return (IFixedValueParameter<DoubleValue>)Parameters["Regularization"]; }
|
---|
| 67 | }
|
---|
[8466] | 68 | #endregion
|
---|
| 69 |
|
---|
| 70 | #region Properties
|
---|
[8681] | 71 | public int K {
|
---|
[8470] | 72 | get { return KParameter.Value.Value; }
|
---|
| 73 | set { KParameter.Value.Value = value; }
|
---|
[8466] | 74 | }
|
---|
[8681] | 75 | public int Dimensions {
|
---|
[8466] | 76 | get { return DimensionsParameter.Value.Value; }
|
---|
| 77 | set { DimensionsParameter.Value.Value = value; }
|
---|
| 78 | }
|
---|
[8681] | 79 | public int NeighborSamples {
|
---|
[8466] | 80 | get { return NeighborSamplesParameter.Value.Value; }
|
---|
| 81 | set { NeighborSamplesParameter.Value.Value = value; }
|
---|
| 82 | }
|
---|
[8681] | 83 | public int Iterations {
|
---|
[8466] | 84 | get { return IterationsParameter.Value.Value; }
|
---|
| 85 | set { IterationsParameter.Value.Value = value; }
|
---|
| 86 | }
|
---|
[8681] | 87 | public double Regularization {
|
---|
| 88 | get { return RegularizationParameter.Value.Value; }
|
---|
| 89 | set { RegularizationParameter.Value.Value = value; }
|
---|
| 90 | }
|
---|
[8466] | 91 | #endregion
|
---|
| 92 |
|
---|
| 93 | [StorableConstructor]
|
---|
| 94 | private NcaAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
| 95 | private NcaAlgorithm(NcaAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
| 96 | public NcaAlgorithm()
|
---|
| 97 | : base() {
|
---|
[8681] | 98 | Parameters.Add(new FixedValueParameter<IntValue>("K", "The K for the nearest neighbor.", new IntValue(3)));
|
---|
[8466] | 99 | Parameters.Add(new FixedValueParameter<IntValue>("Dimensions", "The number of dimensions that NCA should reduce the data to.", new IntValue(2)));
|
---|
| 100 | Parameters.Add(new ConstrainedValueParameter<INCAInitializer>("Initialization", "Which method should be used to initialize the matrix. Typically LDA (linear discriminant analysis) should provide a good estimate."));
|
---|
[8681] | 101 | Parameters.Add(new FixedValueParameter<IntValue>("NeighborSamples", "How many of the neighbors should be sampled in order to speed up the calculation. This should be at least the value of k and at most the number of training instances minus one.", new IntValue(60)));
|
---|
| 102 | Parameters.Add(new FixedValueParameter<IntValue>("Iterations", "How many iterations the conjugate gradient (CG) method should be allowed to perform. The method might still terminate earlier if a local optima has already been reached.", new IntValue(50)));
|
---|
| 103 | Parameters.Add(new FixedValueParameter<DoubleValue>("Regularization", "A non-negative paramter which can be set to increase generalization and avoid overfitting. If set to 0 the algorithm is similar to NCA as proposed by Goldberger et al.", new DoubleValue(0)));
|
---|
[8466] | 104 |
|
---|
| 105 | INCAInitializer defaultInitializer = null;
|
---|
| 106 | foreach (var initializer in ApplicationManager.Manager.GetInstances<INCAInitializer>().OrderBy(x => x.ItemName)) {
|
---|
| 107 | if (initializer is LDAInitializer) defaultInitializer = initializer;
|
---|
| 108 | InitializationParameter.ValidValues.Add(initializer);
|
---|
| 109 | }
|
---|
| 110 | if (defaultInitializer != null) InitializationParameter.Value = defaultInitializer;
|
---|
| 111 |
|
---|
| 112 | Problem = new ClassificationProblem();
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 116 | return new NcaAlgorithm(this, cloner);
|
---|
| 117 | }
|
---|
| 118 |
|
---|
[8681] | 119 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 120 | private void AfterDeserialization() {
|
---|
| 121 | if (!Parameters.ContainsKey("Regularization")) {
|
---|
| 122 | Parameters.Add(new FixedValueParameter<DoubleValue>("Regularization", "A non-negative paramter which can be set to increase generalization and avoid overfitting. If set to 0 the algorithm is similar to NCA as proposed by Goldberger et al.", new DoubleValue(0)));
|
---|
| 123 | }
|
---|
| 124 | }
|
---|
| 125 |
|
---|
[8466] | 126 | public override void Prepare() {
|
---|
| 127 | if (Problem != null) base.Prepare();
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | protected override void Run() {
|
---|
| 131 | var initializer = InitializationParameter.Value;
|
---|
| 132 |
|
---|
| 133 | var clonedProblem = (IClassificationProblemData)Problem.ProblemData.Clone();
|
---|
[8681] | 134 | var model = Train(clonedProblem, K, Dimensions, NeighborSamples, Regularization, Iterations, initializer.Initialize(clonedProblem, Dimensions), ReportQuality, CancellationToken.None);
|
---|
| 135 | var solution = model.CreateClassificationSolution(clonedProblem);
|
---|
| 136 | if (!Results.ContainsKey("ClassificationSolution"))
|
---|
| 137 | Results.Add(new Result("ClassificationSolution", "The classification solution.", solution));
|
---|
| 138 | else Results["ClassificationSolution"].Value = solution;
|
---|
[8466] | 139 | }
|
---|
| 140 |
|
---|
[8681] | 141 | public static INcaClassificationSolution CreateClassificationSolution(IClassificationProblemData data, int k, int dimensions, int neighborSamples, double regularization, int iterations, INCAInitializer initializer) {
|
---|
[8466] | 142 | var clonedProblem = (IClassificationProblemData)data.Clone();
|
---|
[8681] | 143 | var model = Train(clonedProblem, k, dimensions, neighborSamples, regularization, iterations, initializer);
|
---|
[8466] | 144 | return model.CreateClassificationSolution(clonedProblem);
|
---|
| 145 | }
|
---|
| 146 |
|
---|
[8681] | 147 | public static INcaModel Train(IClassificationProblemData problemData, int k, int dimensions, int neighborSamples, double regularization, int iterations, INCAInitializer initializer) {
|
---|
| 148 | return Train(problemData, k, dimensions, neighborSamples, regularization, iterations, initializer.Initialize(problemData, dimensions), null, CancellationToken.None);
|
---|
[8466] | 149 | }
|
---|
| 150 |
|
---|
[8681] | 151 | public static INcaModel Train(IClassificationProblemData problemData, int k, int neighborSamples, double regularization, int iterations, double[,] initalMatrix) {
|
---|
[8466] | 152 | var matrix = new double[initalMatrix.Length];
|
---|
| 153 | for (int i = 0; i < initalMatrix.GetLength(0); i++)
|
---|
| 154 | for (int j = 0; j < initalMatrix.GetLength(1); j++)
|
---|
| 155 | matrix[i * initalMatrix.GetLength(1) + j] = initalMatrix[i, j];
|
---|
[8681] | 156 | return Train(problemData, k, initalMatrix.GetLength(1), neighborSamples, regularization, iterations, matrix, null, CancellationToken.None);
|
---|
[8466] | 157 | }
|
---|
| 158 |
|
---|
[8681] | 159 | private static INcaModel Train(IClassificationProblemData data, int k, int dimensions, int neighborSamples, double regularization, int iterations, double[] matrix, Reporter reporter, CancellationToken cancellation) {
|
---|
[8466] | 160 | var scaling = new Scaling(data.Dataset, data.AllowedInputVariables, data.TrainingIndices);
|
---|
| 161 | var scaledData = AlglibUtil.PrepareAndScaleInputMatrix(data.Dataset, data.AllowedInputVariables, data.TrainingIndices, scaling);
|
---|
| 162 | var classes = data.Dataset.GetDoubleValues(data.TargetVariable, data.TrainingIndices).ToArray();
|
---|
| 163 | var attributes = scaledData.GetLength(1);
|
---|
| 164 |
|
---|
| 165 | alglib.mincgstate state;
|
---|
| 166 | alglib.mincgreport rep;
|
---|
| 167 | alglib.mincgcreate(matrix, out state);
|
---|
| 168 | alglib.mincgsetcond(state, 0, 0, 0, iterations);
|
---|
| 169 | alglib.mincgsetxrep(state, true);
|
---|
[8681] | 170 | //alglib.mincgsetgradientcheck(state, 0.01);
|
---|
[8466] | 171 | int neighborSampleSize = neighborSamples;
|
---|
[8681] | 172 | Optimize(state, scaledData, classes, dimensions, neighborSampleSize, regularization, cancellation, reporter);
|
---|
[8466] | 173 | alglib.mincgresults(state, out matrix, out rep);
|
---|
[8681] | 174 | if (rep.terminationtype == -7) throw new InvalidOperationException("Gradient verification failed.");
|
---|
[8466] | 175 |
|
---|
| 176 | var transformationMatrix = new double[attributes, dimensions];
|
---|
| 177 | var counter = 0;
|
---|
| 178 | for (var i = 0; i < attributes; i++)
|
---|
| 179 | for (var j = 0; j < dimensions; j++)
|
---|
| 180 | transformationMatrix[i, j] = matrix[counter++];
|
---|
| 181 |
|
---|
| 182 | return new NcaModel(k, transformationMatrix, data.Dataset, data.TrainingIndices, data.TargetVariable, data.AllowedInputVariables, scaling, data.ClassValues.ToArray());
|
---|
| 183 | }
|
---|
| 184 |
|
---|
[8681] | 185 | private static void Optimize(alglib.mincgstate state, double[,] data, double[] classes, int dimensions, int neighborSampleSize, double lambda, CancellationToken cancellation, Reporter reporter) {
|
---|
[8466] | 186 | while (alglib.mincgiteration(state)) {
|
---|
| 187 | if (cancellation.IsCancellationRequested) break;
|
---|
| 188 | if (state.needfg) {
|
---|
[8681] | 189 | Gradient(state.x, ref state.innerobj.f, state.innerobj.g, data, classes, dimensions, neighborSampleSize, lambda);
|
---|
[8466] | 190 | continue;
|
---|
| 191 | }
|
---|
| 192 | if (state.innerobj.xupdated) {
|
---|
| 193 | if (reporter != null)
|
---|
[8681] | 194 | reporter(state.innerobj.f, state.innerobj.x, state.innerobj.g);
|
---|
[8466] | 195 | continue;
|
---|
| 196 | }
|
---|
| 197 | throw new InvalidOperationException("Neighborhood Components Analysis: Error in Optimize() (some derivatives were not provided?)");
|
---|
| 198 | }
|
---|
| 199 | }
|
---|
| 200 |
|
---|
[8681] | 201 | private static void Gradient(double[] A, ref double func, double[] grad, double[,] data, double[] classes, int dimensions, int neighborSampleSize, double lambda) {
|
---|
[8466] | 202 | var instances = data.GetLength(0);
|
---|
| 203 | var attributes = data.GetLength(1);
|
---|
| 204 |
|
---|
| 205 | var AMatrix = new Matrix(A, A.Length / dimensions, dimensions);
|
---|
| 206 |
|
---|
| 207 | alglib.sparsematrix probabilities;
|
---|
| 208 | alglib.sparsecreate(instances, instances, out probabilities);
|
---|
| 209 | var transformedDistances = new Dictionary<int, double>(instances);
|
---|
| 210 | for (int i = 0; i < instances; i++) {
|
---|
| 211 | var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
|
---|
| 212 | for (int k = 0; k < instances; k++) {
|
---|
| 213 | if (k == i) {
|
---|
| 214 | transformedDistances.Remove(k);
|
---|
| 215 | continue;
|
---|
| 216 | }
|
---|
| 217 | var kVector = new Matrix(GetRow(data, k));
|
---|
[8681] | 218 | transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SumOfSquares());
|
---|
[8466] | 219 | }
|
---|
[8681] | 220 | var normalization = transformedDistances.Sum(x => x.Value);
|
---|
| 221 | if (normalization <= 0) continue;
|
---|
| 222 | foreach (var s in transformedDistances.Where(x => x.Value > 0).OrderByDescending(x => x.Value).Take(neighborSampleSize)) {
|
---|
| 223 | alglib.sparseset(probabilities, i, s.Key, s.Value / normalization);
|
---|
[8466] | 224 | }
|
---|
| 225 | }
|
---|
| 226 | alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
|
---|
| 227 |
|
---|
| 228 | int t0 = 0, t1 = 0, r, c;
|
---|
| 229 | double val;
|
---|
| 230 | var pi = new double[instances];
|
---|
| 231 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
[8681] | 232 | if (classes[r].IsAlmost(classes[c])) {
|
---|
| 233 | pi[r] += val;
|
---|
| 234 | }
|
---|
[8466] | 235 | }
|
---|
| 236 |
|
---|
| 237 | var innerSum = new double[attributes, attributes];
|
---|
| 238 | while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
|
---|
| 239 | var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
|
---|
| 240 | vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
|
---|
[8681] | 241 |
|
---|
| 242 | if (classes[r].IsAlmost(classes[c])) {
|
---|
| 243 | vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
|
---|
| 244 | }
|
---|
[8466] | 245 | }
|
---|
| 246 |
|
---|
[8681] | 247 | func = -pi.Sum() + lambda * AMatrix.SumOfSquares();
|
---|
| 248 |
|
---|
[8466] | 249 | r = 0;
|
---|
[8681] | 250 | var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
|
---|
[8466] | 251 | foreach (var g in newGrad) {
|
---|
[8681] | 252 | grad[r] = g + lambda * 2 * A[r];
|
---|
| 253 | r++;
|
---|
[8466] | 254 | }
|
---|
| 255 | }
|
---|
| 256 |
|
---|
[8681] | 257 | private void ReportQuality(double func, double[] coefficients, double[] gradients) {
|
---|
[8466] | 258 | var instances = Problem.ProblemData.TrainingIndices.Count();
|
---|
| 259 | DataTable qualities;
|
---|
| 260 | if (!Results.ContainsKey("Optimization")) {
|
---|
| 261 | qualities = new DataTable("Optimization");
|
---|
[8681] | 262 | qualities.Rows.Add(new DataRow("Quality", string.Empty));
|
---|
[8466] | 263 | Results.Add(new Result("Optimization", qualities));
|
---|
| 264 | } else qualities = (DataTable)Results["Optimization"].Value;
|
---|
[8681] | 265 | qualities.Rows["Quality"].Values.Add(-func / instances);
|
---|
[8466] | 266 |
|
---|
[8681] | 267 | string[] attributNames = Problem.ProblemData.AllowedInputVariables.ToArray();
|
---|
| 268 | if (gradients != null) {
|
---|
| 269 | DataTable grads;
|
---|
| 270 | if (!Results.ContainsKey("Gradients")) {
|
---|
| 271 | grads = new DataTable("Gradients");
|
---|
| 272 | for (int i = 0; i < gradients.Length; i++)
|
---|
| 273 | grads.Rows.Add(new DataRow(attributNames[i / Dimensions] + "-" + (i % Dimensions), string.Empty));
|
---|
| 274 | Results.Add(new Result("Gradients", grads));
|
---|
| 275 | } else grads = (DataTable)Results["Gradients"].Value;
|
---|
| 276 | for (int i = 0; i < gradients.Length; i++)
|
---|
| 277 | grads.Rows[attributNames[i / Dimensions] + "-" + (i % Dimensions)].Values.Add(gradients[i]);
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | if (!Results.ContainsKey("Quality")) {
|
---|
| 281 | Results.Add(new Result("Quality", new DoubleValue(-func / instances)));
|
---|
| 282 | } else ((DoubleValue)Results["Quality"].Value).Value = -func / instances;
|
---|
| 283 |
|
---|
| 284 | var attributes = attributNames.Length;
|
---|
| 285 | var transformationMatrix = new double[attributes, Dimensions];
|
---|
| 286 | var counter = 0;
|
---|
| 287 | for (var i = 0; i < attributes; i++)
|
---|
| 288 | for (var j = 0; j < Dimensions; j++)
|
---|
| 289 | transformationMatrix[i, j] = coefficients[counter++];
|
---|
| 290 |
|
---|
| 291 | var scaling = new Scaling(Problem.ProblemData.Dataset, attributNames, Problem.ProblemData.TrainingIndices);
|
---|
| 292 | var model = new NcaModel(K, transformationMatrix, Problem.ProblemData.Dataset, Problem.ProblemData.TrainingIndices, Problem.ProblemData.TargetVariable, attributNames, scaling, Problem.ProblemData.ClassValues.ToArray());
|
---|
| 293 |
|
---|
| 294 | IClassificationSolution solution = model.CreateClassificationSolution(Problem.ProblemData);
|
---|
| 295 | if (!Results.ContainsKey("ClassificationSolution")) {
|
---|
| 296 | Results.Add(new Result("ClassificationSolution", solution));
|
---|
| 297 | } else {
|
---|
| 298 | Results["ClassificationSolution"].Value = solution;
|
---|
| 299 | }
|
---|
[8466] | 300 | }
|
---|
| 301 |
|
---|
| 302 | private static IEnumerable<double> GetRow(double[,] data, int row) {
|
---|
| 303 | for (int i = 0; i < data.GetLength(1); i++)
|
---|
| 304 | yield return data[row, i];
|
---|
| 305 | }
|
---|
[8681] | 306 |
|
---|
[8466] | 307 | }
|
---|
| 308 | }
|
---|