[8466] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8466] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
[9270] | 24 | using HeuristicLab.Algorithms.GradientDescent;
|
---|
[8466] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
[9270] | 28 | using HeuristicLab.Operators;
|
---|
[8466] | 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.PluginInfrastructure;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[9270] | 34 | using HeuristicLab.Random;
|
---|
[8466] | 35 |
|
---|
[8471] | 36 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8466] | 37 | /// <summary>
|
---|
| 38 | /// Neighborhood Components Analysis
|
---|
| 39 | /// </summary>
|
---|
[8681] | 40 | [Item("Neighborhood Components Analysis (NCA)", @"Implementation of Neighborhood Components Analysis
|
---|
| 41 | based on the description of J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov. 2005.
|
---|
| 42 | Neighbourhood Component Analysis. Advances in Neural Information Processing Systems, 17. pp. 513-520
|
---|
| 43 | with additional regularizations described in Z. Yang, J. Laaksonen. 2007.
|
---|
| 44 | Regularized Neighborhood Component Analysis. Lecture Notes in Computer Science, 4522. pp. 253-262.")]
|
---|
[8466] | 45 | [Creatable("Data Analysis")]
|
---|
| 46 | [StorableClass]
|
---|
[9270] | 47 | public sealed class NcaAlgorithm : EngineAlgorithm {
|
---|
| 48 | #region Parameter Names
|
---|
| 49 | private const string SeedParameterName = "Seed";
|
---|
| 50 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
| 51 | private const string KParameterName = "K";
|
---|
| 52 | private const string DimensionsParameterName = "Dimensions";
|
---|
| 53 | private const string InitializationParameterName = "Initialization";
|
---|
| 54 | private const string NeighborSamplesParameterName = "NeighborSamples";
|
---|
| 55 | private const string IterationsParameterName = "Iterations";
|
---|
| 56 | private const string RegularizationParameterName = "Regularization";
|
---|
| 57 | private const string NcaModelCreatorParameterName = "NcaModelCreator";
|
---|
| 58 | private const string NcaSolutionCreatorParameterName = "NcaSolutionCreator";
|
---|
| 59 | private const string ApproximateGradientsParameterName = "ApproximateGradients";
|
---|
| 60 | private const string NcaMatrixParameterName = "NcaMatrix";
|
---|
| 61 | private const string NcaMatrixGradientsParameterName = "NcaMatrixGradients";
|
---|
| 62 | private const string QualityParameterName = "Quality";
|
---|
| 63 | #endregion
|
---|
| 64 |
|
---|
| 65 | public override Type ProblemType { get { return typeof(IClassificationProblem); } }
|
---|
| 66 | public new IClassificationProblem Problem {
|
---|
| 67 | get { return (IClassificationProblem)base.Problem; }
|
---|
| 68 | set { base.Problem = value; }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
[8466] | 71 | #region Parameter Properties
|
---|
[9270] | 72 | public IValueParameter<IntValue> SeedParameter {
|
---|
| 73 | get { return (IValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
| 74 | }
|
---|
| 75 | public IValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
| 76 | get { return (IValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
| 77 | }
|
---|
[8470] | 78 | public IFixedValueParameter<IntValue> KParameter {
|
---|
[9270] | 79 | get { return (IFixedValueParameter<IntValue>)Parameters[KParameterName]; }
|
---|
[8466] | 80 | }
|
---|
| 81 | public IFixedValueParameter<IntValue> DimensionsParameter {
|
---|
[9270] | 82 | get { return (IFixedValueParameter<IntValue>)Parameters[DimensionsParameterName]; }
|
---|
[8466] | 83 | }
|
---|
[9270] | 84 | public IConstrainedValueParameter<INcaInitializer> InitializationParameter {
|
---|
| 85 | get { return (IConstrainedValueParameter<INcaInitializer>)Parameters[InitializationParameterName]; }
|
---|
[8466] | 86 | }
|
---|
| 87 | public IFixedValueParameter<IntValue> NeighborSamplesParameter {
|
---|
[9270] | 88 | get { return (IFixedValueParameter<IntValue>)Parameters[NeighborSamplesParameterName]; }
|
---|
[8466] | 89 | }
|
---|
| 90 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
[9270] | 91 | get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
[8466] | 92 | }
|
---|
[8681] | 93 | public IFixedValueParameter<DoubleValue> RegularizationParameter {
|
---|
[9270] | 94 | get { return (IFixedValueParameter<DoubleValue>)Parameters[RegularizationParameterName]; }
|
---|
[8681] | 95 | }
|
---|
[9270] | 96 | public IValueParameter<BoolValue> ApproximateGradientsParameter {
|
---|
| 97 | get { return (IValueParameter<BoolValue>)Parameters[ApproximateGradientsParameterName]; }
|
---|
| 98 | }
|
---|
| 99 | public IValueParameter<INcaModelCreator> NcaModelCreatorParameter {
|
---|
| 100 | get { return (IValueParameter<INcaModelCreator>)Parameters[NcaModelCreatorParameterName]; }
|
---|
| 101 | }
|
---|
| 102 | public IValueParameter<INcaSolutionCreator> NcaSolutionCreatorParameter {
|
---|
| 103 | get { return (IValueParameter<INcaSolutionCreator>)Parameters[NcaSolutionCreatorParameterName]; }
|
---|
| 104 | }
|
---|
[8466] | 105 | #endregion
|
---|
| 106 |
|
---|
| 107 | #region Properties
|
---|
[9270] | 108 | public int Seed {
|
---|
| 109 | get { return SeedParameter.Value.Value; }
|
---|
| 110 | set { SeedParameter.Value.Value = value; }
|
---|
| 111 | }
|
---|
| 112 | public bool SetSeedRandomly {
|
---|
| 113 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
| 114 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
| 115 | }
|
---|
[8681] | 116 | public int K {
|
---|
[8470] | 117 | get { return KParameter.Value.Value; }
|
---|
| 118 | set { KParameter.Value.Value = value; }
|
---|
[8466] | 119 | }
|
---|
[8681] | 120 | public int Dimensions {
|
---|
[8466] | 121 | get { return DimensionsParameter.Value.Value; }
|
---|
| 122 | set { DimensionsParameter.Value.Value = value; }
|
---|
| 123 | }
|
---|
[8681] | 124 | public int NeighborSamples {
|
---|
[8466] | 125 | get { return NeighborSamplesParameter.Value.Value; }
|
---|
| 126 | set { NeighborSamplesParameter.Value.Value = value; }
|
---|
| 127 | }
|
---|
[8681] | 128 | public int Iterations {
|
---|
[8466] | 129 | get { return IterationsParameter.Value.Value; }
|
---|
| 130 | set { IterationsParameter.Value.Value = value; }
|
---|
| 131 | }
|
---|
[8681] | 132 | public double Regularization {
|
---|
| 133 | get { return RegularizationParameter.Value.Value; }
|
---|
| 134 | set { RegularizationParameter.Value.Value = value; }
|
---|
| 135 | }
|
---|
[9270] | 136 | public INcaModelCreator NcaModelCreator {
|
---|
| 137 | get { return NcaModelCreatorParameter.Value; }
|
---|
| 138 | set { NcaModelCreatorParameter.Value = value; }
|
---|
| 139 | }
|
---|
| 140 | public INcaSolutionCreator NcaSolutionCreator {
|
---|
| 141 | get { return NcaSolutionCreatorParameter.Value; }
|
---|
| 142 | set { NcaSolutionCreatorParameter.Value = value; }
|
---|
| 143 | }
|
---|
[8466] | 144 | #endregion
|
---|
| 145 |
|
---|
| 146 | [StorableConstructor]
|
---|
| 147 | private NcaAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
| 148 | private NcaAlgorithm(NcaAlgorithm original, Cloner cloner) : base(original, cloner) { }
|
---|
| 149 | public NcaAlgorithm()
|
---|
| 150 | : base() {
|
---|
[9270] | 151 | Parameters.Add(new ValueParameter<IntValue>(SeedParameterName, "The seed of the random number generator.", new IntValue(0)));
|
---|
| 152 | Parameters.Add(new ValueParameter<BoolValue>(SetSeedRandomlyParameterName, "A boolean flag that indicates whether the seed should be randomly reset each time the algorithm is run.", new BoolValue(true)));
|
---|
| 153 | Parameters.Add(new FixedValueParameter<IntValue>(KParameterName, "The K for the nearest neighbor.", new IntValue(3)));
|
---|
| 154 | Parameters.Add(new FixedValueParameter<IntValue>(DimensionsParameterName, "The number of dimensions that NCA should reduce the data to.", new IntValue(2)));
|
---|
| 155 | Parameters.Add(new ConstrainedValueParameter<INcaInitializer>(InitializationParameterName, "Which method should be used to initialize the matrix. Typically LDA (linear discriminant analysis) should provide a good estimate."));
|
---|
| 156 | Parameters.Add(new FixedValueParameter<IntValue>(NeighborSamplesParameterName, "How many of the neighbors should be sampled in order to speed up the calculation. This should be at least the value of k and at most the number of training instances minus one will be used.", new IntValue(60)));
|
---|
| 157 | Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "How many iterations the conjugate gradient (CG) method should be allowed to perform. The method might still terminate earlier if a local optima has already been reached.", new IntValue(50)));
|
---|
| 158 | Parameters.Add(new FixedValueParameter<DoubleValue>(RegularizationParameterName, "A non-negative paramter which can be set to increase generalization and avoid overfitting. If set to 0 the algorithm is similar to NCA as proposed by Goldberger et al.", new DoubleValue(0)));
|
---|
| 159 | Parameters.Add(new ValueParameter<INcaModelCreator>(NcaModelCreatorParameterName, "Creates an NCA model out of the matrix.", new NcaModelCreator()));
|
---|
| 160 | Parameters.Add(new ValueParameter<INcaSolutionCreator>(NcaSolutionCreatorParameterName, "Creates an NCA solution given a model and some data.", new NcaSolutionCreator()));
|
---|
| 161 | Parameters.Add(new ValueParameter<BoolValue>(ApproximateGradientsParameterName, "True if the gradient should be approximated otherwise they are computed exactly.", new BoolValue()));
|
---|
[8466] | 162 |
|
---|
[9270] | 163 | NcaSolutionCreatorParameter.Hidden = true;
|
---|
| 164 | ApproximateGradientsParameter.Hidden = true;
|
---|
| 165 |
|
---|
| 166 | INcaInitializer defaultInitializer = null;
|
---|
| 167 | foreach (var initializer in ApplicationManager.Manager.GetInstances<INcaInitializer>().OrderBy(x => x.ItemName)) {
|
---|
| 168 | if (initializer is LdaInitializer) defaultInitializer = initializer;
|
---|
[8466] | 169 | InitializationParameter.ValidValues.Add(initializer);
|
---|
| 170 | }
|
---|
| 171 | if (defaultInitializer != null) InitializationParameter.Value = defaultInitializer;
|
---|
| 172 |
|
---|
[9270] | 173 | var randomCreator = new RandomCreator();
|
---|
| 174 | var ncaInitializer = new Placeholder();
|
---|
| 175 | var bfgsInitializer = new LbfgsInitializer();
|
---|
| 176 | var makeStep = new LbfgsMakeStep();
|
---|
| 177 | var branch = new ConditionalBranch();
|
---|
| 178 | var gradientCalculator = new NcaGradientCalculator();
|
---|
| 179 | var modelCreator = new Placeholder();
|
---|
| 180 | var updateResults = new LbfgsUpdateResults();
|
---|
| 181 | var analyzer = new LbfgsAnalyzer();
|
---|
| 182 | var finalModelCreator = new Placeholder();
|
---|
| 183 | var finalAnalyzer = new LbfgsAnalyzer();
|
---|
| 184 | var solutionCreator = new Placeholder();
|
---|
[8466] | 185 |
|
---|
[9270] | 186 | OperatorGraph.InitialOperator = randomCreator;
|
---|
| 187 | randomCreator.SeedParameter.ActualName = SeedParameterName;
|
---|
| 188 | randomCreator.SeedParameter.Value = null;
|
---|
| 189 | randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameterName;
|
---|
| 190 | randomCreator.SetSeedRandomlyParameter.Value = null;
|
---|
| 191 | randomCreator.Successor = ncaInitializer;
|
---|
[8466] | 192 |
|
---|
[9270] | 193 | ncaInitializer.Name = "(NcaInitializer)";
|
---|
| 194 | ncaInitializer.OperatorParameter.ActualName = InitializationParameterName;
|
---|
| 195 | ncaInitializer.Successor = bfgsInitializer;
|
---|
[8681] | 196 |
|
---|
[9270] | 197 | bfgsInitializer.IterationsParameter.ActualName = IterationsParameterName;
|
---|
| 198 | bfgsInitializer.PointParameter.ActualName = NcaMatrixParameterName;
|
---|
| 199 | bfgsInitializer.ApproximateGradientsParameter.ActualName = ApproximateGradientsParameterName;
|
---|
| 200 | bfgsInitializer.Successor = makeStep;
|
---|
[8466] | 201 |
|
---|
[9270] | 202 | makeStep.StateParameter.ActualName = bfgsInitializer.StateParameter.Name;
|
---|
| 203 | makeStep.PointParameter.ActualName = NcaMatrixParameterName;
|
---|
| 204 | makeStep.Successor = branch;
|
---|
[8466] | 205 |
|
---|
[9270] | 206 | branch.ConditionParameter.ActualName = makeStep.TerminationCriterionParameter.Name;
|
---|
| 207 | branch.FalseBranch = gradientCalculator;
|
---|
| 208 | branch.TrueBranch = finalModelCreator;
|
---|
[8466] | 209 |
|
---|
[9270] | 210 | gradientCalculator.Successor = modelCreator;
|
---|
[8466] | 211 |
|
---|
[9270] | 212 | modelCreator.OperatorParameter.ActualName = NcaModelCreatorParameterName;
|
---|
| 213 | modelCreator.Successor = updateResults;
|
---|
[8466] | 214 |
|
---|
[9270] | 215 | updateResults.StateParameter.ActualName = bfgsInitializer.StateParameter.Name;
|
---|
| 216 | updateResults.QualityParameter.ActualName = QualityParameterName;
|
---|
| 217 | updateResults.QualityGradientsParameter.ActualName = NcaMatrixGradientsParameterName;
|
---|
| 218 | updateResults.ApproximateGradientsParameter.ActualName = ApproximateGradientsParameterName;
|
---|
| 219 | updateResults.Successor = analyzer;
|
---|
[8466] | 220 |
|
---|
[9270] | 221 | analyzer.QualityParameter.ActualName = QualityParameterName;
|
---|
| 222 | analyzer.PointParameter.ActualName = NcaMatrixParameterName;
|
---|
| 223 | analyzer.QualityGradientsParameter.ActualName = NcaMatrixGradientsParameterName;
|
---|
| 224 | analyzer.StateParameter.ActualName = bfgsInitializer.StateParameter.Name;
|
---|
| 225 | analyzer.PointsTableParameter.ActualName = "Matrix table";
|
---|
| 226 | analyzer.QualityGradientsTableParameter.ActualName = "Gradients table";
|
---|
| 227 | analyzer.QualitiesTableParameter.ActualName = "Qualities";
|
---|
| 228 | analyzer.Successor = makeStep;
|
---|
[8466] | 229 |
|
---|
[9270] | 230 | finalModelCreator.OperatorParameter.ActualName = NcaModelCreatorParameterName;
|
---|
| 231 | finalModelCreator.Successor = finalAnalyzer;
|
---|
[8466] | 232 |
|
---|
[9270] | 233 | finalAnalyzer.QualityParameter.ActualName = QualityParameterName;
|
---|
| 234 | finalAnalyzer.PointParameter.ActualName = NcaMatrixParameterName;
|
---|
| 235 | finalAnalyzer.QualityGradientsParameter.ActualName = NcaMatrixGradientsParameterName;
|
---|
| 236 | finalAnalyzer.PointsTableParameter.ActualName = analyzer.PointsTableParameter.ActualName;
|
---|
| 237 | finalAnalyzer.QualityGradientsTableParameter.ActualName = analyzer.QualityGradientsTableParameter.ActualName;
|
---|
| 238 | finalAnalyzer.QualitiesTableParameter.ActualName = analyzer.QualitiesTableParameter.ActualName;
|
---|
| 239 | finalAnalyzer.Successor = solutionCreator;
|
---|
[8466] | 240 |
|
---|
[9270] | 241 | solutionCreator.OperatorParameter.ActualName = NcaSolutionCreatorParameterName;
|
---|
[8466] | 242 |
|
---|
[9270] | 243 | Problem = new ClassificationProblem();
|
---|
[8466] | 244 | }
|
---|
| 245 |
|
---|
[9270] | 246 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 247 | return new NcaAlgorithm(this, cloner);
|
---|
[8466] | 248 | }
|
---|
| 249 |
|
---|
[9270] | 250 | public override void Prepare() {
|
---|
| 251 | if (Problem != null) base.Prepare();
|
---|
[8466] | 252 | }
|
---|
| 253 | }
|
---|
| 254 | }
|
---|