[9270] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
| 25 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 26 | using HeuristicLab.Operators;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [Item("NcaInitializer", "Base class for initializers for NCA.")]
|
---|
| 33 | [StorableClass]
|
---|
| 34 | public abstract class NcaInitializer : SingleSuccessorOperator, INcaInitializer {
|
---|
| 35 |
|
---|
| 36 | public ILookupParameter<IClassificationProblemData> ProblemDataParameter {
|
---|
| 37 | get { return (ILookupParameter<IClassificationProblemData>)Parameters["ProblemData"]; }
|
---|
| 38 | }
|
---|
| 39 | public ILookupParameter<IntValue> DimensionsParameter {
|
---|
| 40 | get { return (ILookupParameter<IntValue>)Parameters["Dimensions"]; }
|
---|
| 41 | }
|
---|
| 42 | public ILookupParameter<RealVector> NcaMatrixParameter {
|
---|
| 43 | get { return (ILookupParameter<RealVector>)Parameters["NcaMatrix"]; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | [StorableConstructor]
|
---|
| 47 | protected NcaInitializer(bool deserializing) : base(deserializing) { }
|
---|
| 48 | protected NcaInitializer(NcaInitializer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 49 | public NcaInitializer() {
|
---|
| 50 | Parameters.Add(new LookupParameter<IClassificationProblemData>("ProblemData", "The classification problem data."));
|
---|
| 51 | Parameters.Add(new LookupParameter<IntValue>("Dimensions", "The number of dimensions to which the features should be pruned."));
|
---|
| 52 | Parameters.Add(new LookupParameter<RealVector>("NcaMatrix", "The coefficients of the matrix that need to be optimized. Note that the matrix is flattened."));
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public override IOperation Apply() {
|
---|
| 56 | var problemData = ProblemDataParameter.ActualValue;
|
---|
| 57 |
|
---|
| 58 | var dimensions = DimensionsParameter.ActualValue.Value;
|
---|
[9272] | 59 | var matrix = Initialize(problemData, dimensions);
|
---|
[9270] | 60 | var attributes = matrix.GetLength(0);
|
---|
| 61 |
|
---|
| 62 | var result = new double[attributes * dimensions];
|
---|
| 63 | for (int i = 0; i < attributes; i++)
|
---|
| 64 | for (int j = 0; j < dimensions; j++)
|
---|
| 65 | result[i * dimensions + j] = matrix[i, j];
|
---|
| 66 |
|
---|
| 67 | NcaMatrixParameter.ActualValue = new RealVector(result);
|
---|
| 68 | return base.Apply();
|
---|
| 69 | }
|
---|
| 70 |
|
---|
[9272] | 71 | public abstract double[,] Initialize(IClassificationProblemData data, int dimensions);
|
---|
[9270] | 72 | }
|
---|
| 73 | }
|
---|