[8425] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 28 |
|
---|
[8471] | 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8425] | 30 | [Item("LDA", "Initializes the matrix by performing a linear discriminant analysis.")]
|
---|
| 31 | [StorableClass]
|
---|
| 32 | public class LDAInitializer : Item, INCAInitializer {
|
---|
| 33 |
|
---|
| 34 | [StorableConstructor]
|
---|
| 35 | protected LDAInitializer(bool deserializing) : base(deserializing) { }
|
---|
| 36 | protected LDAInitializer(LDAInitializer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 37 | public LDAInitializer() : base() { }
|
---|
| 38 |
|
---|
| 39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 40 | return new LDAInitializer(this, cloner);
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public double[] Initialize(IClassificationProblemData data, int dimensions) {
|
---|
| 44 | var instances = data.TrainingIndices.Count();
|
---|
| 45 | var attributes = data.AllowedInputVariables.Count();
|
---|
| 46 |
|
---|
| 47 | var ldaDs = new double[instances, attributes + 1];
|
---|
| 48 | int row, col = 0;
|
---|
| 49 | foreach (var variable in data.AllowedInputVariables) {
|
---|
| 50 | row = 0;
|
---|
| 51 | foreach (var value in data.Dataset.GetDoubleValues(variable, data.TrainingIndices)) {
|
---|
| 52 | ldaDs[row, col] = value;
|
---|
| 53 | row++;
|
---|
| 54 | }
|
---|
| 55 | col++;
|
---|
| 56 | }
|
---|
| 57 | row = 0;
|
---|
| 58 | var uniqueClasses = new Dictionary<double, int>();
|
---|
| 59 | foreach (var label in data.Dataset.GetDoubleValues(data.TargetVariable, data.TrainingIndices)) {
|
---|
| 60 | if (!uniqueClasses.ContainsKey(label))
|
---|
| 61 | uniqueClasses[label] = uniqueClasses.Count;
|
---|
| 62 | ldaDs[row++, attributes] = label;
|
---|
| 63 | }
|
---|
| 64 | for (row = 0; row < instances; row++)
|
---|
| 65 | ldaDs[row, attributes] = uniqueClasses[ldaDs[row, attributes]];
|
---|
| 66 |
|
---|
| 67 | int info;
|
---|
| 68 | double[,] matrix;
|
---|
| 69 | alglib.fisherldan(ldaDs, instances, attributes, uniqueClasses.Count, out info, out matrix);
|
---|
| 70 |
|
---|
| 71 | var result = new double[attributes * dimensions];
|
---|
| 72 | for (int i = 0; i < attributes; i++)
|
---|
| 73 | for (int j = 0; j < dimensions; j++)
|
---|
| 74 | result[i * dimensions + j] = matrix[i, j];
|
---|
| 75 |
|
---|
| 76 | return result;
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | }
|
---|
| 80 | }
|
---|