1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Diagnostics.Contracts;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression {
|
---|
27 | // evalutes expressions (on vectors)
|
---|
28 | internal class ExpressionEvaluator {
|
---|
29 | // manages it's own vector buffers
|
---|
30 | private readonly double[][] vectorBuffers;
|
---|
31 | private readonly double[][] scalarBuffers; // scalars are vectors of length 1 (to allow mixing scalars and vectors on the same stack)
|
---|
32 | private int lastVecBufIdx;
|
---|
33 | private int lastScalarBufIdx;
|
---|
34 |
|
---|
35 |
|
---|
36 | private double[] GetVectorBuffer() {
|
---|
37 | return vectorBuffers[--lastVecBufIdx];
|
---|
38 | }
|
---|
39 | private double[] GetScalarBuffer() {
|
---|
40 | return scalarBuffers[--lastScalarBufIdx];
|
---|
41 | }
|
---|
42 |
|
---|
43 | private void ReleaseBuffer(double[] buf) {
|
---|
44 | if (buf.Length == 1) {
|
---|
45 | scalarBuffers[lastScalarBufIdx++] = buf;
|
---|
46 | } else {
|
---|
47 | vectorBuffers[lastVecBufIdx++] = buf;
|
---|
48 | }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public const int MaxStackSize = 100;
|
---|
52 | public const int MaxParams = 50;
|
---|
53 | private readonly int vLen;
|
---|
54 | private readonly double lowerEstimationLimit;
|
---|
55 | private readonly double upperEstimationLimit;
|
---|
56 | private readonly double nanReplacementValue;
|
---|
57 |
|
---|
58 | private readonly double[][] stack;
|
---|
59 | private readonly double[][][] gradientStack;
|
---|
60 |
|
---|
61 | // preallocate stack and gradient stack
|
---|
62 | public ExpressionEvaluator(int vLen, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
|
---|
63 | if (vLen <= 1) throw new ArgumentException("number of elements in a variable must be > 1", "vlen");
|
---|
64 | this.vLen = vLen;
|
---|
65 | this.lowerEstimationLimit = lowerEstimationLimit;
|
---|
66 | this.upperEstimationLimit = upperEstimationLimit;
|
---|
67 | this.nanReplacementValue = (upperEstimationLimit - lowerEstimationLimit) / 2.0 + lowerEstimationLimit;
|
---|
68 |
|
---|
69 | stack = new double[MaxStackSize][];
|
---|
70 | gradientStack = new double[MaxParams][][];
|
---|
71 |
|
---|
72 | for (int k = 0; k < MaxParams; k++) {
|
---|
73 | gradientStack[k] = new double[MaxStackSize][];
|
---|
74 | }
|
---|
75 |
|
---|
76 | // preallocate buffers
|
---|
77 | vectorBuffers = new double[MaxStackSize * (1 + MaxParams)][];
|
---|
78 | scalarBuffers = new double[MaxStackSize * (1 + MaxParams)][];
|
---|
79 | for (int i = 0; i < MaxStackSize; i++) {
|
---|
80 | ReleaseBuffer(new double[vLen]);
|
---|
81 | ReleaseBuffer(new double[1]);
|
---|
82 |
|
---|
83 | for (int k = 0; k < MaxParams; k++) {
|
---|
84 | ReleaseBuffer(new double[vLen]);
|
---|
85 | ReleaseBuffer(new double[1]);
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|
89 |
|
---|
90 | // pred must be allocated by the caller
|
---|
91 | // if adjustOffsetForLogAndExp is set to true we determine c in log(c + f(x)) to make sure that c + f(x) is positive
|
---|
92 | public void Exec(byte[] code, double[][] vars, double[] consts, double[] pred, bool adjustOffsetForLogAndExp = false) {
|
---|
93 | Contract.Assert(pred != null && pred.Length >= vLen);
|
---|
94 | int topOfStack = -1;
|
---|
95 | int pc = 0;
|
---|
96 | int curParamIdx = -1;
|
---|
97 | byte op;
|
---|
98 | short arg;
|
---|
99 | // checked at the end to make sure we do not leak buffers
|
---|
100 | int initialScalarCount = lastScalarBufIdx;
|
---|
101 | int initialVectorCount = lastVecBufIdx;
|
---|
102 |
|
---|
103 | while (true) {
|
---|
104 | ReadNext(code, ref pc, out op, out arg);
|
---|
105 | switch (op) {
|
---|
106 | case (byte)OpCodes.Nop: throw new InvalidProgramException(); // not allowed
|
---|
107 | case (byte)OpCodes.LoadConst0: {
|
---|
108 | ++topOfStack;
|
---|
109 | var z = GetScalarBuffer();
|
---|
110 | z[0] = 0;
|
---|
111 | stack[topOfStack] = z;
|
---|
112 | break;
|
---|
113 | }
|
---|
114 | case (byte)OpCodes.LoadConst1: {
|
---|
115 | ++topOfStack;
|
---|
116 | var z = GetScalarBuffer();
|
---|
117 | z[0] = 1.0;
|
---|
118 | stack[topOfStack] = z;
|
---|
119 | break;
|
---|
120 | }
|
---|
121 | case (byte)OpCodes.LoadParamN: {
|
---|
122 | ++topOfStack;
|
---|
123 | var c = consts[++curParamIdx];
|
---|
124 | var z = GetScalarBuffer();
|
---|
125 | z[0] = c;
|
---|
126 | stack[topOfStack] = z;
|
---|
127 | break;
|
---|
128 | }
|
---|
129 | case (byte)OpCodes.LoadVar: {
|
---|
130 | ++topOfStack;
|
---|
131 | var z = GetVectorBuffer();
|
---|
132 | Array.Copy(vars[arg], z, vars[arg].Length);
|
---|
133 | stack[topOfStack] = z;
|
---|
134 | break;
|
---|
135 | }
|
---|
136 | case (byte)OpCodes.Add: {
|
---|
137 | topOfStack--;
|
---|
138 | var a = stack[topOfStack + 1];
|
---|
139 | var b = stack[topOfStack];
|
---|
140 | stack[topOfStack] = Add(a, b);
|
---|
141 | ReleaseBuffer(a);
|
---|
142 | ReleaseBuffer(b);
|
---|
143 | break;
|
---|
144 | }
|
---|
145 | case (byte)OpCodes.Mul: {
|
---|
146 | topOfStack--;
|
---|
147 | var a = stack[topOfStack + 1];
|
---|
148 | var b = stack[topOfStack];
|
---|
149 | stack[topOfStack] = Mul(a, b);
|
---|
150 | ReleaseBuffer(a);
|
---|
151 | ReleaseBuffer(b);
|
---|
152 | break;
|
---|
153 | }
|
---|
154 | case (byte)OpCodes.Log: {
|
---|
155 | if (adjustOffsetForLogAndExp) {
|
---|
156 | // here we assume that the last used parameter is c in log(f(x) + c)
|
---|
157 | // this must match actions for producing code in the automaton!
|
---|
158 |
|
---|
159 | // we can easily adjust c to make sure that f(x) + c is positive because at this point we all values for f(x)
|
---|
160 | var fxc = stack[topOfStack];
|
---|
161 | var minFx = fxc.Min() - consts[curParamIdx]; // stack[topOfStack] is f(x) + c
|
---|
162 |
|
---|
163 | var delta = 1.0 - minFx - consts[curParamIdx];
|
---|
164 | // adjust c so that minFx + c = 1 ... log(minFx + c) = 0
|
---|
165 | consts[curParamIdx] += delta;
|
---|
166 |
|
---|
167 | // also adjust values on stack
|
---|
168 | for (int i = 0; i < fxc.Length; i++) fxc[i] += delta;
|
---|
169 | }
|
---|
170 | var x = stack[topOfStack];
|
---|
171 | for (int i = 0; i < x.Length; i++)
|
---|
172 | x[i] = Math.Log(x[i]);
|
---|
173 | break;
|
---|
174 | }
|
---|
175 | case (byte)OpCodes.Exp: {
|
---|
176 | if (adjustOffsetForLogAndExp) {
|
---|
177 | // here we assume that the last used parameter is c in exp(f(x) * c)
|
---|
178 | // this must match actions for producing code in the automaton!
|
---|
179 |
|
---|
180 | // adjust c to make sure that exp(f(x) * c) is not too large
|
---|
181 | var fxc = stack[topOfStack];
|
---|
182 | var maxFx = fxc.Max() / consts[curParamIdx]; // stack[topOfStack] is f(x) * c
|
---|
183 |
|
---|
184 | var f = 1.0 / (maxFx * consts[curParamIdx]);
|
---|
185 | // adjust c so that maxFx*c = 1 TODO: this is not ideal as it enforces positive arguments to exp()
|
---|
186 | consts[curParamIdx] *= f;
|
---|
187 |
|
---|
188 | // also adjust values on stack
|
---|
189 | for (int i = 0; i < fxc.Length; i++) fxc[i] *= f;
|
---|
190 | }
|
---|
191 |
|
---|
192 | var x = stack[topOfStack];
|
---|
193 | for (int i = 0; i < x.Length; i++)
|
---|
194 | x[i] = Math.Exp(x[i]);
|
---|
195 | break;
|
---|
196 | }
|
---|
197 | case (byte)OpCodes.Inv: {
|
---|
198 | var x = stack[topOfStack];
|
---|
199 | for (int i = 0; i < x.Length; i++)
|
---|
200 | x[i] = 1.0 / (x[i]);
|
---|
201 | break;
|
---|
202 | }
|
---|
203 | case (byte)OpCodes.Exit:
|
---|
204 | Contract.Assert(topOfStack == 0);
|
---|
205 | var r = stack[topOfStack];
|
---|
206 | if (r.Length == 1) {
|
---|
207 | var v = double.IsNaN(r[0]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[0]));
|
---|
208 | for (int i = 0; i < vLen; i++)
|
---|
209 | pred[i] = v;
|
---|
210 | } else {
|
---|
211 | for (int i = 0; i < vLen; i++) {
|
---|
212 | var v = double.IsNaN(r[i]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[i]));
|
---|
213 | pred[i] = v;
|
---|
214 | }
|
---|
215 | }
|
---|
216 | ReleaseBuffer(r);
|
---|
217 | Contract.Assert(lastVecBufIdx == initialVectorCount);
|
---|
218 | Contract.Assert(lastScalarBufIdx == initialScalarCount);
|
---|
219 | return;
|
---|
220 | }
|
---|
221 | }
|
---|
222 | }
|
---|
223 |
|
---|
224 |
|
---|
225 | // evaluation with forward autodiff
|
---|
226 | // pred and gradients must be allocated by the caller
|
---|
227 | public void ExecGradient(byte[] code, double[][] vars, double[] consts, double[] pred, double[][] gradients) {
|
---|
228 | Contract.Assert(pred != null && pred.Length >= vLen);
|
---|
229 | int topOfStack = -1;
|
---|
230 | int pc = 0;
|
---|
231 | int curParamIdx = -1;
|
---|
232 | byte op;
|
---|
233 | short arg;
|
---|
234 | int nParams = consts.Length;
|
---|
235 | Contract.Assert(gradients != null && gradients.Length >= nParams && gradients.All(g => g.Length >= vLen));
|
---|
236 |
|
---|
237 | // checked at the end to make sure we do not leak buffers
|
---|
238 | int initialScalarCount = lastScalarBufIdx;
|
---|
239 | int initialVectorCount = lastVecBufIdx;
|
---|
240 |
|
---|
241 | while (true) {
|
---|
242 | ReadNext(code, ref pc, out op, out arg);
|
---|
243 | switch (op) {
|
---|
244 | case (byte)OpCodes.Nop: throw new InvalidProgramException(); // not allowed
|
---|
245 | case (byte)OpCodes.LoadConst0: {
|
---|
246 | ++topOfStack;
|
---|
247 | var z = GetScalarBuffer();
|
---|
248 | z[0] = 0;
|
---|
249 | stack[topOfStack] = z;
|
---|
250 | for (int k = 0; k < nParams; ++k) {
|
---|
251 | var b = GetScalarBuffer();
|
---|
252 | b[0] = 0.0;
|
---|
253 | gradientStack[k][topOfStack] = b;
|
---|
254 | }
|
---|
255 | break;
|
---|
256 | }
|
---|
257 | case (byte)OpCodes.LoadConst1: {
|
---|
258 | ++topOfStack;
|
---|
259 | var z = GetScalarBuffer();
|
---|
260 | z[0] = 1.0;
|
---|
261 | stack[topOfStack] = z;
|
---|
262 | for (int k = 0; k < nParams; ++k) {
|
---|
263 | var b = GetScalarBuffer();
|
---|
264 | b[0] = 0.0;
|
---|
265 | gradientStack[k][topOfStack] = b;
|
---|
266 | }
|
---|
267 | break;
|
---|
268 | }
|
---|
269 | case (byte)OpCodes.LoadParamN: {
|
---|
270 | var c = consts[++curParamIdx];
|
---|
271 | ++topOfStack;
|
---|
272 | var z = GetScalarBuffer();
|
---|
273 | z[0] = c;
|
---|
274 | stack[topOfStack] = z;
|
---|
275 | for (int k = 0; k < nParams; ++k) {
|
---|
276 | var b = GetScalarBuffer();
|
---|
277 | b[0] = k == curParamIdx ? 1.0 : 0.0;
|
---|
278 | gradientStack[k][topOfStack] = b;
|
---|
279 | }
|
---|
280 | break;
|
---|
281 | }
|
---|
282 | case (byte)OpCodes.LoadVar: {
|
---|
283 | ++topOfStack;
|
---|
284 | var z = GetVectorBuffer();
|
---|
285 | Array.Copy(vars[arg], z, vars[arg].Length);
|
---|
286 | stack[topOfStack] = z;
|
---|
287 | for (int k = 0; k < nParams; ++k) {
|
---|
288 | var b = GetScalarBuffer();
|
---|
289 | b[0] = 0.0;
|
---|
290 | gradientStack[k][topOfStack] = b;
|
---|
291 | }
|
---|
292 | }
|
---|
293 | break;
|
---|
294 | case (byte)OpCodes.Add: {
|
---|
295 | topOfStack--;
|
---|
296 | var a = stack[topOfStack + 1];
|
---|
297 | var b = stack[topOfStack];
|
---|
298 | stack[topOfStack] = Add(a, b);
|
---|
299 | ReleaseBuffer(a);
|
---|
300 | ReleaseBuffer(b);
|
---|
301 |
|
---|
302 | // same for gradient
|
---|
303 | for (int k = 0; k < nParams; ++k) {
|
---|
304 | var ag = gradientStack[k][topOfStack + 1];
|
---|
305 | var bg = gradientStack[k][topOfStack];
|
---|
306 | gradientStack[k][topOfStack] = Add(ag, bg);
|
---|
307 | ReleaseBuffer(ag);
|
---|
308 | ReleaseBuffer(bg);
|
---|
309 | }
|
---|
310 | break;
|
---|
311 | }
|
---|
312 | case (byte)OpCodes.Mul: {
|
---|
313 | topOfStack--;
|
---|
314 | var a = stack[topOfStack + 1];
|
---|
315 | var b = stack[topOfStack];
|
---|
316 | stack[topOfStack] = Mul(a, b);
|
---|
317 |
|
---|
318 | // same for gradient
|
---|
319 | // f(x) g(x) f '(x) g(x) + f(x) g'(x)
|
---|
320 | for (int k = 0; k < nParams; ++k) {
|
---|
321 | var ag = gradientStack[k][topOfStack + 1];
|
---|
322 | var bg = gradientStack[k][topOfStack];
|
---|
323 | var t1 = Mul(ag, b);
|
---|
324 | var t2 = Mul(a, bg);
|
---|
325 | gradientStack[k][topOfStack] = Add(t1, t2);
|
---|
326 | ReleaseBuffer(ag);
|
---|
327 | ReleaseBuffer(bg);
|
---|
328 | ReleaseBuffer(t1);
|
---|
329 | ReleaseBuffer(t2);
|
---|
330 | }
|
---|
331 |
|
---|
332 | ReleaseBuffer(a);
|
---|
333 | ReleaseBuffer(b);
|
---|
334 |
|
---|
335 | break;
|
---|
336 | }
|
---|
337 | case (byte)OpCodes.Log: {
|
---|
338 | var x = stack[topOfStack];
|
---|
339 | // calc gradients first before destroying x
|
---|
340 | // log(f(x))' = f(x)'/f(x)
|
---|
341 | for (int k = 0; k < nParams; k++) {
|
---|
342 | var xg = gradientStack[k][topOfStack];
|
---|
343 | gradientStack[k][topOfStack] = Frac(xg, x);
|
---|
344 | ReleaseBuffer(xg);
|
---|
345 | }
|
---|
346 |
|
---|
347 | for (int i = 0; i < x.Length; i++)
|
---|
348 | x[i] = Math.Log(x[i]);
|
---|
349 |
|
---|
350 | break;
|
---|
351 | }
|
---|
352 | case (byte)OpCodes.Exp: {
|
---|
353 | var x = stack[topOfStack];
|
---|
354 | for (int i = 0; i < x.Length; i++)
|
---|
355 | x[i] = Math.Exp(x[i]);
|
---|
356 |
|
---|
357 | for (int k = 0; k < nParams; k++) {
|
---|
358 | var xg = gradientStack[k][topOfStack];
|
---|
359 | gradientStack[k][topOfStack] = Mul(x, xg); // e(f(x))' = e(f(x)) * f(x)'
|
---|
360 | ReleaseBuffer(xg);
|
---|
361 | }
|
---|
362 | break;
|
---|
363 | }
|
---|
364 | case (byte)OpCodes.Inv: {
|
---|
365 | var x = stack[topOfStack];
|
---|
366 | for (int i = 0; i < x.Length; i++)
|
---|
367 | x[i] = 1.0 / x[i];
|
---|
368 |
|
---|
369 | for (int k = 0; k < nParams; k++) {
|
---|
370 | var xg = gradientStack[k][topOfStack];
|
---|
371 | // x has already been inverted above
|
---|
372 | // (1/f)' = -f' / f²
|
---|
373 | var invF = Mul(xg, x);
|
---|
374 | gradientStack[k][topOfStack] = Mul(invF, x, factor: -1.0);
|
---|
375 | ReleaseBuffer(xg);
|
---|
376 | ReleaseBuffer(invF);
|
---|
377 | }
|
---|
378 | break;
|
---|
379 | }
|
---|
380 | case (byte)OpCodes.Exit:
|
---|
381 | Contract.Assert(topOfStack == 0);
|
---|
382 | var r = stack[topOfStack];
|
---|
383 | if (r.Length == 1) {
|
---|
384 | var v = double.IsNaN(r[0]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[0]));
|
---|
385 | for (int i = 0; i < vLen; i++)
|
---|
386 | pred[i] = v;
|
---|
387 | } else {
|
---|
388 | for (int i = 0; i < vLen; i++) {
|
---|
389 | var v = double.IsNaN(r[i]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[i]));
|
---|
390 | pred[i] = v;
|
---|
391 | }
|
---|
392 | }
|
---|
393 | ReleaseBuffer(r);
|
---|
394 |
|
---|
395 | // same for gradients
|
---|
396 | for (int k = 0; k < nParams; k++) {
|
---|
397 | var g = gradientStack[k][topOfStack];
|
---|
398 | if (g.Length == 1) {
|
---|
399 | for (int i = 0; i < vLen; i++)
|
---|
400 | gradients[k][i] = g[0];
|
---|
401 | } else
|
---|
402 | Array.Copy(g, gradients[k], vLen);
|
---|
403 | ReleaseBuffer(g);
|
---|
404 | }
|
---|
405 |
|
---|
406 | Contract.Assert(lastVecBufIdx == initialVectorCount);
|
---|
407 | Contract.Assert(lastScalarBufIdx == initialScalarCount);
|
---|
408 | return; // break loop
|
---|
409 | }
|
---|
410 | }
|
---|
411 | }
|
---|
412 |
|
---|
413 | private double[] Add(double[] a, double[] b) {
|
---|
414 | double[] target = null;
|
---|
415 | if (a.Length > 1) {
|
---|
416 | target = GetVectorBuffer();
|
---|
417 | if (b.Length > 1) {
|
---|
418 | for (int i = 0; i < vLen; i++)
|
---|
419 | target[i] = a[i] + b[i];
|
---|
420 | } else {
|
---|
421 | // b == scalar
|
---|
422 | for (int i = 0; i < vLen; i++)
|
---|
423 | target[i] = a[i] + b[0];
|
---|
424 | }
|
---|
425 | } else {
|
---|
426 | // a == scalar
|
---|
427 | if (b.Length > 1) {
|
---|
428 | target = GetVectorBuffer();
|
---|
429 | for (int i = 0; i < vLen; i++)
|
---|
430 | target[i] = a[0] + b[i];
|
---|
431 | } else {
|
---|
432 | // b == scalar
|
---|
433 | target = GetScalarBuffer();
|
---|
434 | target[0] = a[0] + b[0];
|
---|
435 | }
|
---|
436 | }
|
---|
437 | return target;
|
---|
438 | }
|
---|
439 |
|
---|
440 | private double[] Mul(double[] a, double[] b, double factor = 1.0) {
|
---|
441 | double[] target = null;
|
---|
442 | if (a.Length > 1) {
|
---|
443 | if (b.Length > 1) {
|
---|
444 | target = GetVectorBuffer();
|
---|
445 | for (int i = 0; i < vLen; i++)
|
---|
446 | target[i] = factor * a[i] * b[i];
|
---|
447 | } else {
|
---|
448 | // b == scalar
|
---|
449 | if (Math.Abs(b[0]) < 1E-12 /* == 0 */) {
|
---|
450 | target = GetScalarBuffer();
|
---|
451 | target[0] = 0.0;
|
---|
452 | } else {
|
---|
453 | target = GetVectorBuffer();
|
---|
454 | for (int i = 0; i < vLen; i++)
|
---|
455 | target[i] = factor * a[i] * b[0];
|
---|
456 | }
|
---|
457 | }
|
---|
458 | } else {
|
---|
459 | // a == scalar
|
---|
460 | if (b.Length > 1) {
|
---|
461 | if (Math.Abs(a[0]) < 1E-12 /* == 0 */) {
|
---|
462 | target = GetScalarBuffer();
|
---|
463 | target[0] = 0.0;
|
---|
464 | } else {
|
---|
465 | target = GetVectorBuffer();
|
---|
466 | for (int i = 0; i < vLen; i++)
|
---|
467 | target[i] = factor * a[0] * b[i];
|
---|
468 | }
|
---|
469 | } else {
|
---|
470 | // b == scalar
|
---|
471 | target = GetScalarBuffer();
|
---|
472 | target[0] = factor * a[0] * b[0];
|
---|
473 | }
|
---|
474 | }
|
---|
475 | return target;
|
---|
476 | }
|
---|
477 |
|
---|
478 | private double[] Frac(double[] a, double[] b) {
|
---|
479 | double[] target = null;
|
---|
480 | if (a.Length > 1) {
|
---|
481 | target = GetVectorBuffer();
|
---|
482 | if (b.Length > 1) {
|
---|
483 | for (int i = 0; i < vLen; i++)
|
---|
484 | target[i] = a[i] / b[i];
|
---|
485 | } else {
|
---|
486 | // b == scalar
|
---|
487 | for (int i = 0; i < vLen; i++)
|
---|
488 | target[i] = a[i] / b[0];
|
---|
489 | }
|
---|
490 | } else {
|
---|
491 | // a == scalar
|
---|
492 | if (b.Length > 1) {
|
---|
493 | if (Math.Abs(a[0]) < 1E-12 /* == 0 */) {
|
---|
494 | target = GetScalarBuffer();
|
---|
495 | target[0] = 0.0;
|
---|
496 | } else {
|
---|
497 | target = GetVectorBuffer();
|
---|
498 | for (int i = 0; i < vLen; i++)
|
---|
499 | target[i] = a[0] / b[i];
|
---|
500 | }
|
---|
501 | } else {
|
---|
502 | // b == scalar
|
---|
503 | target = GetScalarBuffer();
|
---|
504 | target[0] = a[0] / b[0];
|
---|
505 | }
|
---|
506 | }
|
---|
507 | return target;
|
---|
508 | }
|
---|
509 |
|
---|
510 | private void ReadNext(byte[] code, ref int pc, out byte op, out short s) {
|
---|
511 | op = code[pc++];
|
---|
512 | s = 0;
|
---|
513 | if (op == (byte)OpCodes.LoadVar) {
|
---|
514 | s = (short)((code[pc] << 8) | code[pc + 1]);
|
---|
515 | pc += 2;
|
---|
516 | }
|
---|
517 | }
|
---|
518 | }
|
---|
519 | }
|
---|