[13645] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13645] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Diagnostics.Contracts;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression {
|
---|
| 27 | // evalutes expressions (on vectors)
|
---|
| 28 | internal class ExpressionEvaluator {
|
---|
| 29 | // manages it's own vector buffers
|
---|
[13651] | 30 | private readonly double[][] vectorBuffers;
|
---|
| 31 | private readonly double[][] scalarBuffers; // scalars are vectors of length 1 (to allow mixing scalars and vectors on the same stack)
|
---|
| 32 | private int lastVecBufIdx;
|
---|
| 33 | private int lastScalarBufIdx;
|
---|
[13645] | 34 |
|
---|
| 35 |
|
---|
| 36 | private double[] GetVectorBuffer() {
|
---|
[13651] | 37 | return vectorBuffers[--lastVecBufIdx];
|
---|
[13645] | 38 | }
|
---|
| 39 | private double[] GetScalarBuffer() {
|
---|
[13651] | 40 | return scalarBuffers[--lastScalarBufIdx];
|
---|
[13645] | 41 | }
|
---|
| 42 |
|
---|
| 43 | private void ReleaseBuffer(double[] buf) {
|
---|
[13651] | 44 | if (buf.Length == 1) {
|
---|
| 45 | scalarBuffers[lastScalarBufIdx++] = buf;
|
---|
| 46 | } else {
|
---|
| 47 | vectorBuffers[lastVecBufIdx++] = buf;
|
---|
| 48 | }
|
---|
[13645] | 49 | }
|
---|
| 50 |
|
---|
| 51 | public const int MaxStackSize = 100;
|
---|
| 52 | public const int MaxParams = 50;
|
---|
| 53 | private readonly int vLen;
|
---|
| 54 | private readonly double lowerEstimationLimit;
|
---|
| 55 | private readonly double upperEstimationLimit;
|
---|
| 56 | private readonly double nanReplacementValue;
|
---|
| 57 |
|
---|
| 58 | private readonly double[][] stack;
|
---|
| 59 | private readonly double[][][] gradientStack;
|
---|
| 60 |
|
---|
| 61 | // preallocate stack and gradient stack
|
---|
| 62 | public ExpressionEvaluator(int vLen, double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue) {
|
---|
| 63 | if (vLen <= 1) throw new ArgumentException("number of elements in a variable must be > 1", "vlen");
|
---|
| 64 | this.vLen = vLen;
|
---|
| 65 | this.lowerEstimationLimit = lowerEstimationLimit;
|
---|
| 66 | this.upperEstimationLimit = upperEstimationLimit;
|
---|
| 67 | this.nanReplacementValue = (upperEstimationLimit - lowerEstimationLimit) / 2.0 + lowerEstimationLimit;
|
---|
| 68 |
|
---|
| 69 | stack = new double[MaxStackSize][];
|
---|
| 70 | gradientStack = new double[MaxParams][][];
|
---|
| 71 |
|
---|
| 72 | for (int k = 0; k < MaxParams; k++) {
|
---|
| 73 | gradientStack[k] = new double[MaxStackSize][];
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | // preallocate buffers
|
---|
[13651] | 77 | vectorBuffers = new double[MaxStackSize * (1 + MaxParams)][];
|
---|
| 78 | scalarBuffers = new double[MaxStackSize * (1 + MaxParams)][];
|
---|
[13645] | 79 | for (int i = 0; i < MaxStackSize; i++) {
|
---|
| 80 | ReleaseBuffer(new double[vLen]);
|
---|
| 81 | ReleaseBuffer(new double[1]);
|
---|
| 82 |
|
---|
| 83 | for (int k = 0; k < MaxParams; k++) {
|
---|
| 84 | ReleaseBuffer(new double[vLen]);
|
---|
| 85 | ReleaseBuffer(new double[1]);
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | // pred must be allocated by the caller
|
---|
[14016] | 91 | // if adjustOffsetForLogAndExp is set to true we determine c in log(c + f(x)) to make sure that c + f(x) is positive
|
---|
| 92 | public void Exec(byte[] code, double[][] vars, double[] consts, double[] pred, bool adjustOffsetForLogAndExp = false) {
|
---|
[13645] | 93 | Contract.Assert(pred != null && pred.Length >= vLen);
|
---|
| 94 | int topOfStack = -1;
|
---|
| 95 | int pc = 0;
|
---|
| 96 | int curParamIdx = -1;
|
---|
| 97 | byte op;
|
---|
| 98 | short arg;
|
---|
| 99 | // checked at the end to make sure we do not leak buffers
|
---|
[13651] | 100 | int initialScalarCount = lastScalarBufIdx;
|
---|
| 101 | int initialVectorCount = lastVecBufIdx;
|
---|
[13645] | 102 |
|
---|
| 103 | while (true) {
|
---|
| 104 | ReadNext(code, ref pc, out op, out arg);
|
---|
| 105 | switch (op) {
|
---|
| 106 | case (byte)OpCodes.Nop: throw new InvalidProgramException(); // not allowed
|
---|
| 107 | case (byte)OpCodes.LoadConst0: {
|
---|
| 108 | ++topOfStack;
|
---|
| 109 | var z = GetScalarBuffer();
|
---|
| 110 | z[0] = 0;
|
---|
| 111 | stack[topOfStack] = z;
|
---|
| 112 | break;
|
---|
| 113 | }
|
---|
| 114 | case (byte)OpCodes.LoadConst1: {
|
---|
| 115 | ++topOfStack;
|
---|
| 116 | var z = GetScalarBuffer();
|
---|
| 117 | z[0] = 1.0;
|
---|
| 118 | stack[topOfStack] = z;
|
---|
| 119 | break;
|
---|
| 120 | }
|
---|
| 121 | case (byte)OpCodes.LoadParamN: {
|
---|
| 122 | ++topOfStack;
|
---|
| 123 | var c = consts[++curParamIdx];
|
---|
| 124 | var z = GetScalarBuffer();
|
---|
| 125 | z[0] = c;
|
---|
| 126 | stack[topOfStack] = z;
|
---|
| 127 | break;
|
---|
| 128 | }
|
---|
| 129 | case (byte)OpCodes.LoadVar: {
|
---|
| 130 | ++topOfStack;
|
---|
| 131 | var z = GetVectorBuffer();
|
---|
| 132 | Array.Copy(vars[arg], z, vars[arg].Length);
|
---|
| 133 | stack[topOfStack] = z;
|
---|
| 134 | break;
|
---|
| 135 | }
|
---|
| 136 | case (byte)OpCodes.Add: {
|
---|
| 137 | topOfStack--;
|
---|
| 138 | var a = stack[topOfStack + 1];
|
---|
| 139 | var b = stack[topOfStack];
|
---|
| 140 | stack[topOfStack] = Add(a, b);
|
---|
| 141 | ReleaseBuffer(a);
|
---|
| 142 | ReleaseBuffer(b);
|
---|
| 143 | break;
|
---|
| 144 | }
|
---|
| 145 | case (byte)OpCodes.Mul: {
|
---|
| 146 | topOfStack--;
|
---|
| 147 | var a = stack[topOfStack + 1];
|
---|
| 148 | var b = stack[topOfStack];
|
---|
| 149 | stack[topOfStack] = Mul(a, b);
|
---|
| 150 | ReleaseBuffer(a);
|
---|
| 151 | ReleaseBuffer(b);
|
---|
| 152 | break;
|
---|
| 153 | }
|
---|
| 154 | case (byte)OpCodes.Log: {
|
---|
[14016] | 155 | if (adjustOffsetForLogAndExp) {
|
---|
[13645] | 156 | // here we assume that the last used parameter is c in log(f(x) + c)
|
---|
| 157 | // this must match actions for producing code in the automaton!
|
---|
| 158 |
|
---|
| 159 | // we can easily adjust c to make sure that f(x) + c is positive because at this point we all values for f(x)
|
---|
| 160 | var fxc = stack[topOfStack];
|
---|
| 161 | var minFx = fxc.Min() - consts[curParamIdx]; // stack[topOfStack] is f(x) + c
|
---|
| 162 |
|
---|
| 163 | var delta = 1.0 - minFx - consts[curParamIdx];
|
---|
| 164 | // adjust c so that minFx + c = 1 ... log(minFx + c) = 0
|
---|
| 165 | consts[curParamIdx] += delta;
|
---|
| 166 |
|
---|
| 167 | // also adjust values on stack
|
---|
| 168 | for (int i = 0; i < fxc.Length; i++) fxc[i] += delta;
|
---|
| 169 | }
|
---|
| 170 | var x = stack[topOfStack];
|
---|
| 171 | for (int i = 0; i < x.Length; i++)
|
---|
| 172 | x[i] = Math.Log(x[i]);
|
---|
| 173 | break;
|
---|
| 174 | }
|
---|
| 175 | case (byte)OpCodes.Exp: {
|
---|
[14016] | 176 | if (adjustOffsetForLogAndExp) {
|
---|
[13645] | 177 | // here we assume that the last used parameter is c in exp(f(x) * c)
|
---|
| 178 | // this must match actions for producing code in the automaton!
|
---|
| 179 |
|
---|
| 180 | // adjust c to make sure that exp(f(x) * c) is not too large
|
---|
| 181 | var fxc = stack[topOfStack];
|
---|
| 182 | var maxFx = fxc.Max() / consts[curParamIdx]; // stack[topOfStack] is f(x) * c
|
---|
| 183 |
|
---|
| 184 | var f = 1.0 / (maxFx * consts[curParamIdx]);
|
---|
[13652] | 185 | // adjust c so that maxFx*c = 1 TODO: this is not ideal as it enforces positive arguments to exp()
|
---|
[13645] | 186 | consts[curParamIdx] *= f;
|
---|
| 187 |
|
---|
| 188 | // also adjust values on stack
|
---|
| 189 | for (int i = 0; i < fxc.Length; i++) fxc[i] *= f;
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | var x = stack[topOfStack];
|
---|
| 193 | for (int i = 0; i < x.Length; i++)
|
---|
| 194 | x[i] = Math.Exp(x[i]);
|
---|
| 195 | break;
|
---|
| 196 | }
|
---|
| 197 | case (byte)OpCodes.Inv: {
|
---|
| 198 | var x = stack[topOfStack];
|
---|
| 199 | for (int i = 0; i < x.Length; i++)
|
---|
| 200 | x[i] = 1.0 / (x[i]);
|
---|
| 201 | break;
|
---|
| 202 | }
|
---|
| 203 | case (byte)OpCodes.Exit:
|
---|
| 204 | Contract.Assert(topOfStack == 0);
|
---|
| 205 | var r = stack[topOfStack];
|
---|
| 206 | if (r.Length == 1) {
|
---|
| 207 | var v = double.IsNaN(r[0]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[0]));
|
---|
| 208 | for (int i = 0; i < vLen; i++)
|
---|
| 209 | pred[i] = v;
|
---|
| 210 | } else {
|
---|
| 211 | for (int i = 0; i < vLen; i++) {
|
---|
| 212 | var v = double.IsNaN(r[i]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[i]));
|
---|
| 213 | pred[i] = v;
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 | ReleaseBuffer(r);
|
---|
[13651] | 217 | Contract.Assert(lastVecBufIdx == initialVectorCount);
|
---|
| 218 | Contract.Assert(lastScalarBufIdx == initialScalarCount);
|
---|
[13645] | 219 | return;
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 |
|
---|
| 225 | // evaluation with forward autodiff
|
---|
| 226 | // pred and gradients must be allocated by the caller
|
---|
| 227 | public void ExecGradient(byte[] code, double[][] vars, double[] consts, double[] pred, double[][] gradients) {
|
---|
| 228 | Contract.Assert(pred != null && pred.Length >= vLen);
|
---|
| 229 | int topOfStack = -1;
|
---|
| 230 | int pc = 0;
|
---|
| 231 | int curParamIdx = -1;
|
---|
| 232 | byte op;
|
---|
| 233 | short arg;
|
---|
| 234 | int nParams = consts.Length;
|
---|
| 235 | Contract.Assert(gradients != null && gradients.Length >= nParams && gradients.All(g => g.Length >= vLen));
|
---|
| 236 |
|
---|
| 237 | // checked at the end to make sure we do not leak buffers
|
---|
[13651] | 238 | int initialScalarCount = lastScalarBufIdx;
|
---|
| 239 | int initialVectorCount = lastVecBufIdx;
|
---|
[13645] | 240 |
|
---|
| 241 | while (true) {
|
---|
| 242 | ReadNext(code, ref pc, out op, out arg);
|
---|
| 243 | switch (op) {
|
---|
| 244 | case (byte)OpCodes.Nop: throw new InvalidProgramException(); // not allowed
|
---|
| 245 | case (byte)OpCodes.LoadConst0: {
|
---|
| 246 | ++topOfStack;
|
---|
| 247 | var z = GetScalarBuffer();
|
---|
| 248 | z[0] = 0;
|
---|
| 249 | stack[topOfStack] = z;
|
---|
| 250 | for (int k = 0; k < nParams; ++k) {
|
---|
| 251 | var b = GetScalarBuffer();
|
---|
| 252 | b[0] = 0.0;
|
---|
| 253 | gradientStack[k][topOfStack] = b;
|
---|
| 254 | }
|
---|
| 255 | break;
|
---|
| 256 | }
|
---|
| 257 | case (byte)OpCodes.LoadConst1: {
|
---|
| 258 | ++topOfStack;
|
---|
| 259 | var z = GetScalarBuffer();
|
---|
| 260 | z[0] = 1.0;
|
---|
| 261 | stack[topOfStack] = z;
|
---|
| 262 | for (int k = 0; k < nParams; ++k) {
|
---|
| 263 | var b = GetScalarBuffer();
|
---|
| 264 | b[0] = 0.0;
|
---|
| 265 | gradientStack[k][topOfStack] = b;
|
---|
| 266 | }
|
---|
| 267 | break;
|
---|
| 268 | }
|
---|
| 269 | case (byte)OpCodes.LoadParamN: {
|
---|
| 270 | var c = consts[++curParamIdx];
|
---|
| 271 | ++topOfStack;
|
---|
| 272 | var z = GetScalarBuffer();
|
---|
| 273 | z[0] = c;
|
---|
| 274 | stack[topOfStack] = z;
|
---|
| 275 | for (int k = 0; k < nParams; ++k) {
|
---|
| 276 | var b = GetScalarBuffer();
|
---|
| 277 | b[0] = k == curParamIdx ? 1.0 : 0.0;
|
---|
| 278 | gradientStack[k][topOfStack] = b;
|
---|
| 279 | }
|
---|
| 280 | break;
|
---|
| 281 | }
|
---|
| 282 | case (byte)OpCodes.LoadVar: {
|
---|
| 283 | ++topOfStack;
|
---|
| 284 | var z = GetVectorBuffer();
|
---|
| 285 | Array.Copy(vars[arg], z, vars[arg].Length);
|
---|
| 286 | stack[topOfStack] = z;
|
---|
| 287 | for (int k = 0; k < nParams; ++k) {
|
---|
| 288 | var b = GetScalarBuffer();
|
---|
| 289 | b[0] = 0.0;
|
---|
| 290 | gradientStack[k][topOfStack] = b;
|
---|
| 291 | }
|
---|
| 292 | }
|
---|
| 293 | break;
|
---|
| 294 | case (byte)OpCodes.Add: {
|
---|
| 295 | topOfStack--;
|
---|
| 296 | var a = stack[topOfStack + 1];
|
---|
| 297 | var b = stack[topOfStack];
|
---|
| 298 | stack[topOfStack] = Add(a, b);
|
---|
| 299 | ReleaseBuffer(a);
|
---|
| 300 | ReleaseBuffer(b);
|
---|
| 301 |
|
---|
| 302 | // same for gradient
|
---|
| 303 | for (int k = 0; k < nParams; ++k) {
|
---|
| 304 | var ag = gradientStack[k][topOfStack + 1];
|
---|
| 305 | var bg = gradientStack[k][topOfStack];
|
---|
| 306 | gradientStack[k][topOfStack] = Add(ag, bg);
|
---|
| 307 | ReleaseBuffer(ag);
|
---|
| 308 | ReleaseBuffer(bg);
|
---|
| 309 | }
|
---|
| 310 | break;
|
---|
| 311 | }
|
---|
| 312 | case (byte)OpCodes.Mul: {
|
---|
| 313 | topOfStack--;
|
---|
| 314 | var a = stack[topOfStack + 1];
|
---|
| 315 | var b = stack[topOfStack];
|
---|
| 316 | stack[topOfStack] = Mul(a, b);
|
---|
| 317 |
|
---|
| 318 | // same for gradient
|
---|
| 319 | // f(x) g(x) f '(x) g(x) + f(x) g'(x)
|
---|
| 320 | for (int k = 0; k < nParams; ++k) {
|
---|
| 321 | var ag = gradientStack[k][topOfStack + 1];
|
---|
| 322 | var bg = gradientStack[k][topOfStack];
|
---|
| 323 | var t1 = Mul(ag, b);
|
---|
| 324 | var t2 = Mul(a, bg);
|
---|
| 325 | gradientStack[k][topOfStack] = Add(t1, t2);
|
---|
| 326 | ReleaseBuffer(ag);
|
---|
| 327 | ReleaseBuffer(bg);
|
---|
| 328 | ReleaseBuffer(t1);
|
---|
| 329 | ReleaseBuffer(t2);
|
---|
| 330 | }
|
---|
| 331 |
|
---|
| 332 | ReleaseBuffer(a);
|
---|
| 333 | ReleaseBuffer(b);
|
---|
| 334 |
|
---|
| 335 | break;
|
---|
| 336 | }
|
---|
| 337 | case (byte)OpCodes.Log: {
|
---|
| 338 | var x = stack[topOfStack];
|
---|
| 339 | // calc gradients first before destroying x
|
---|
| 340 | // log(f(x))' = f(x)'/f(x)
|
---|
| 341 | for (int k = 0; k < nParams; k++) {
|
---|
| 342 | var xg = gradientStack[k][topOfStack];
|
---|
| 343 | gradientStack[k][topOfStack] = Frac(xg, x);
|
---|
| 344 | ReleaseBuffer(xg);
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 | for (int i = 0; i < x.Length; i++)
|
---|
| 348 | x[i] = Math.Log(x[i]);
|
---|
| 349 |
|
---|
| 350 | break;
|
---|
| 351 | }
|
---|
| 352 | case (byte)OpCodes.Exp: {
|
---|
| 353 | var x = stack[topOfStack];
|
---|
| 354 | for (int i = 0; i < x.Length; i++)
|
---|
| 355 | x[i] = Math.Exp(x[i]);
|
---|
| 356 |
|
---|
| 357 | for (int k = 0; k < nParams; k++) {
|
---|
| 358 | var xg = gradientStack[k][topOfStack];
|
---|
| 359 | gradientStack[k][topOfStack] = Mul(x, xg); // e(f(x))' = e(f(x)) * f(x)'
|
---|
| 360 | ReleaseBuffer(xg);
|
---|
| 361 | }
|
---|
| 362 | break;
|
---|
| 363 | }
|
---|
| 364 | case (byte)OpCodes.Inv: {
|
---|
| 365 | var x = stack[topOfStack];
|
---|
| 366 | for (int i = 0; i < x.Length; i++)
|
---|
| 367 | x[i] = 1.0 / x[i];
|
---|
| 368 |
|
---|
| 369 | for (int k = 0; k < nParams; k++) {
|
---|
| 370 | var xg = gradientStack[k][topOfStack];
|
---|
| 371 | // x has already been inverted above
|
---|
| 372 | // (1/f)' = -f' / f²
|
---|
| 373 | var invF = Mul(xg, x);
|
---|
| 374 | gradientStack[k][topOfStack] = Mul(invF, x, factor: -1.0);
|
---|
| 375 | ReleaseBuffer(xg);
|
---|
| 376 | ReleaseBuffer(invF);
|
---|
| 377 | }
|
---|
| 378 | break;
|
---|
| 379 | }
|
---|
| 380 | case (byte)OpCodes.Exit:
|
---|
| 381 | Contract.Assert(topOfStack == 0);
|
---|
| 382 | var r = stack[topOfStack];
|
---|
| 383 | if (r.Length == 1) {
|
---|
| 384 | var v = double.IsNaN(r[0]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[0]));
|
---|
| 385 | for (int i = 0; i < vLen; i++)
|
---|
| 386 | pred[i] = v;
|
---|
| 387 | } else {
|
---|
| 388 | for (int i = 0; i < vLen; i++) {
|
---|
| 389 | var v = double.IsNaN(r[i]) ? nanReplacementValue : Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, r[i]));
|
---|
| 390 | pred[i] = v;
|
---|
| 391 | }
|
---|
| 392 | }
|
---|
| 393 | ReleaseBuffer(r);
|
---|
| 394 |
|
---|
| 395 | // same for gradients
|
---|
| 396 | for (int k = 0; k < nParams; k++) {
|
---|
| 397 | var g = gradientStack[k][topOfStack];
|
---|
| 398 | if (g.Length == 1) {
|
---|
| 399 | for (int i = 0; i < vLen; i++)
|
---|
| 400 | gradients[k][i] = g[0];
|
---|
| 401 | } else
|
---|
| 402 | Array.Copy(g, gradients[k], vLen);
|
---|
| 403 | ReleaseBuffer(g);
|
---|
| 404 | }
|
---|
| 405 |
|
---|
[13651] | 406 | Contract.Assert(lastVecBufIdx == initialVectorCount);
|
---|
| 407 | Contract.Assert(lastScalarBufIdx == initialScalarCount);
|
---|
[13645] | 408 | return; // break loop
|
---|
| 409 | }
|
---|
| 410 | }
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | private double[] Add(double[] a, double[] b) {
|
---|
| 414 | double[] target = null;
|
---|
| 415 | if (a.Length > 1) {
|
---|
| 416 | target = GetVectorBuffer();
|
---|
| 417 | if (b.Length > 1) {
|
---|
| 418 | for (int i = 0; i < vLen; i++)
|
---|
| 419 | target[i] = a[i] + b[i];
|
---|
| 420 | } else {
|
---|
| 421 | // b == scalar
|
---|
| 422 | for (int i = 0; i < vLen; i++)
|
---|
| 423 | target[i] = a[i] + b[0];
|
---|
| 424 | }
|
---|
| 425 | } else {
|
---|
| 426 | // a == scalar
|
---|
| 427 | if (b.Length > 1) {
|
---|
| 428 | target = GetVectorBuffer();
|
---|
| 429 | for (int i = 0; i < vLen; i++)
|
---|
| 430 | target[i] = a[0] + b[i];
|
---|
| 431 | } else {
|
---|
| 432 | // b == scalar
|
---|
| 433 | target = GetScalarBuffer();
|
---|
| 434 | target[0] = a[0] + b[0];
|
---|
| 435 | }
|
---|
| 436 | }
|
---|
| 437 | return target;
|
---|
| 438 | }
|
---|
| 439 |
|
---|
| 440 | private double[] Mul(double[] a, double[] b, double factor = 1.0) {
|
---|
| 441 | double[] target = null;
|
---|
| 442 | if (a.Length > 1) {
|
---|
| 443 | if (b.Length > 1) {
|
---|
| 444 | target = GetVectorBuffer();
|
---|
| 445 | for (int i = 0; i < vLen; i++)
|
---|
| 446 | target[i] = factor * a[i] * b[i];
|
---|
| 447 | } else {
|
---|
| 448 | // b == scalar
|
---|
| 449 | if (Math.Abs(b[0]) < 1E-12 /* == 0 */) {
|
---|
| 450 | target = GetScalarBuffer();
|
---|
| 451 | target[0] = 0.0;
|
---|
| 452 | } else {
|
---|
| 453 | target = GetVectorBuffer();
|
---|
| 454 | for (int i = 0; i < vLen; i++)
|
---|
| 455 | target[i] = factor * a[i] * b[0];
|
---|
| 456 | }
|
---|
| 457 | }
|
---|
| 458 | } else {
|
---|
| 459 | // a == scalar
|
---|
| 460 | if (b.Length > 1) {
|
---|
| 461 | if (Math.Abs(a[0]) < 1E-12 /* == 0 */) {
|
---|
| 462 | target = GetScalarBuffer();
|
---|
| 463 | target[0] = 0.0;
|
---|
| 464 | } else {
|
---|
| 465 | target = GetVectorBuffer();
|
---|
| 466 | for (int i = 0; i < vLen; i++)
|
---|
| 467 | target[i] = factor * a[0] * b[i];
|
---|
| 468 | }
|
---|
| 469 | } else {
|
---|
| 470 | // b == scalar
|
---|
| 471 | target = GetScalarBuffer();
|
---|
| 472 | target[0] = factor * a[0] * b[0];
|
---|
| 473 | }
|
---|
| 474 | }
|
---|
| 475 | return target;
|
---|
| 476 | }
|
---|
| 477 |
|
---|
| 478 | private double[] Frac(double[] a, double[] b) {
|
---|
| 479 | double[] target = null;
|
---|
| 480 | if (a.Length > 1) {
|
---|
| 481 | target = GetVectorBuffer();
|
---|
| 482 | if (b.Length > 1) {
|
---|
| 483 | for (int i = 0; i < vLen; i++)
|
---|
| 484 | target[i] = a[i] / b[i];
|
---|
| 485 | } else {
|
---|
| 486 | // b == scalar
|
---|
| 487 | for (int i = 0; i < vLen; i++)
|
---|
| 488 | target[i] = a[i] / b[0];
|
---|
| 489 | }
|
---|
| 490 | } else {
|
---|
| 491 | // a == scalar
|
---|
| 492 | if (b.Length > 1) {
|
---|
| 493 | if (Math.Abs(a[0]) < 1E-12 /* == 0 */) {
|
---|
| 494 | target = GetScalarBuffer();
|
---|
| 495 | target[0] = 0.0;
|
---|
| 496 | } else {
|
---|
| 497 | target = GetVectorBuffer();
|
---|
| 498 | for (int i = 0; i < vLen; i++)
|
---|
| 499 | target[i] = a[0] / b[i];
|
---|
| 500 | }
|
---|
| 501 | } else {
|
---|
| 502 | // b == scalar
|
---|
| 503 | target = GetScalarBuffer();
|
---|
| 504 | target[0] = a[0] / b[0];
|
---|
| 505 | }
|
---|
| 506 | }
|
---|
| 507 | return target;
|
---|
| 508 | }
|
---|
| 509 |
|
---|
| 510 | private void ReadNext(byte[] code, ref int pc, out byte op, out short s) {
|
---|
| 511 | op = code[pc++];
|
---|
| 512 | s = 0;
|
---|
| 513 | if (op == (byte)OpCodes.LoadVar) {
|
---|
[14142] | 514 | s = (short)((code[pc] << 8) | code[pc + 1]);
|
---|
[13645] | 515 | pc += 2;
|
---|
| 516 | }
|
---|
| 517 | }
|
---|
| 518 | }
|
---|
| 519 | }
|
---|