Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/MultinomialLogitModel.cs @ 6603

Last change on this file since 6603 was 6576, checked in by gkronber, 13 years ago

#1475 renamed files and classes.

File size: 4.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.IO;
25using System.Linq;
26using System.Text;
27using HeuristicLab.Common;
28using HeuristicLab.Core;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis;
31using SVM;
32
33namespace HeuristicLab.Algorithms.DataAnalysis {
34  /// <summary>
35  /// Represents a multinomial logit model for classification
36  /// </summary>
37  [StorableClass]
38  [Item("Multinomial Logit Model", "Represents a multinomial logit model for classification.")]
39  public sealed class MultinomialLogitModel : NamedItem, IClassificationModel {
40
41    private alglib.logitmodel logitModel;
42    public alglib.logitmodel Model {
43      get { return logitModel; }
44      set {
45        if (value != logitModel) {
46          if (value == null) throw new ArgumentNullException();
47          logitModel = value;
48          OnChanged(EventArgs.Empty);
49        }
50      }
51    }
52
53    [Storable]
54    private string targetVariable;
55    [Storable]
56    private string[] allowedInputVariables;
57    [Storable]
58    private double[] classValues;
59    [StorableConstructor]
60    private MultinomialLogitModel(bool deserializing)
61      : base(deserializing) {
62      if (deserializing)
63        logitModel = new alglib.logitmodel();
64    }
65    private MultinomialLogitModel(MultinomialLogitModel original, Cloner cloner)
66      : base(original, cloner) {
67      logitModel = new alglib.logitmodel();
68      logitModel.innerobj.w = (double[])original.logitModel.innerobj.w.Clone();
69      targetVariable = original.targetVariable;
70      allowedInputVariables = (string[])original.allowedInputVariables.Clone();
71      this.classValues = (double[])original.classValues.Clone();
72    }
73    public MultinomialLogitModel(alglib.logitmodel logitModel, string targetVariable, IEnumerable<string> allowedInputVariables, double[] classValues)
74      : base() {
75      this.name = ItemName;
76      this.description = ItemDescription;
77      this.logitModel = logitModel;
78      this.targetVariable = targetVariable;
79      this.allowedInputVariables = allowedInputVariables.ToArray();
80      this.classValues = (double[])classValues.Clone();
81    }
82
83    public override IDeepCloneable Clone(Cloner cloner) {
84      return new MultinomialLogitModel(this, cloner);
85    }
86
87    public IEnumerable<double> GetEstimatedClassValues(Dataset dataset, IEnumerable<int> rows) {
88      double[,] inputData = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows);
89
90      int n = inputData.GetLength(0);
91      int columns = inputData.GetLength(1);
92      double[] x = new double[columns];
93      double[] y = new double[classValues.Length];
94
95      for (int row = 0; row < n; row++) {
96        for (int column = 0; column < columns; column++) {
97          x[column] = inputData[row, column];
98        }
99        alglib.mnlprocess(logitModel, x, ref y);
100        // find class for with the largest probability value
101        int maxProbClassIndex = 0;
102        double maxProb = y[0];
103        for (int i = 1; i < y.Length; i++) {
104          if (maxProb < y[i]) {
105            maxProb = y[i];
106            maxProbClassIndex = i;
107          }
108        }
109        yield return classValues[maxProbClassIndex];
110      }
111    }
112
113    #region events
114    public event EventHandler Changed;
115    private void OnChanged(EventArgs e) {
116      var handlers = Changed;
117      if (handlers != null)
118        handlers(this, e);
119    }
120    #endregion
121
122    #region persistence
123    [Storable]
124    private double[] LogitModelW {
125      get {
126        return logitModel.innerobj.w;
127      }
128      set {
129        logitModel.innerobj.w = value;
130      }
131    }
132    #endregion
133  }
134}
Note: See TracBrowser for help on using the repository browser.