1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.DataAnalysis;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
36 | /// <summary>
|
---|
37 | /// Multinomial logit regression data analysis algorithm.
|
---|
38 | /// </summary>
|
---|
39 | [Item("Multinomial Logit Classification", "Multinomial logit classification data analysis algorithm (wrapper for ALGLIB).")]
|
---|
40 | [Creatable("Data Analysis")]
|
---|
41 | [StorableClass]
|
---|
42 | public sealed class MultiNomialLogitClassification : FixedDataAnalysisAlgorithm<IClassificationProblem> {
|
---|
43 | private const string LogitClassificationModelResultName = "Logit classification solution";
|
---|
44 |
|
---|
45 | [StorableConstructor]
|
---|
46 | private MultiNomialLogitClassification(bool deserializing) : base(deserializing) { }
|
---|
47 | private MultiNomialLogitClassification(MultiNomialLogitClassification original, Cloner cloner)
|
---|
48 | : base(original, cloner) {
|
---|
49 | }
|
---|
50 | public MultiNomialLogitClassification()
|
---|
51 | : base() {
|
---|
52 | Problem = new ClassificationProblem();
|
---|
53 | }
|
---|
54 | [StorableHook(HookType.AfterDeserialization)]
|
---|
55 | private void AfterDeserialization() { }
|
---|
56 |
|
---|
57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
58 | return new MultiNomialLogitClassification(this, cloner);
|
---|
59 | }
|
---|
60 |
|
---|
61 | #region logit regression
|
---|
62 | protected override void Run() {
|
---|
63 | double rmsError, relClassError;
|
---|
64 | var solution = CreateLogitClassificationSolution(Problem.ProblemData, out rmsError, out relClassError);
|
---|
65 | Results.Add(new Result(LogitClassificationModelResultName, "The linear regression solution.", solution));
|
---|
66 | Results.Add(new Result("Root mean square error", "The root of the mean of squared errors of the logit regression solution on the training set.", new DoubleValue(rmsError)));
|
---|
67 | Results.Add(new Result("Relative classification error", "Relative classification error on the training set (percentage of misclassified cases).", new PercentValue(relClassError)));
|
---|
68 | }
|
---|
69 |
|
---|
70 | public static IClassificationSolution CreateLogitClassificationSolution(IClassificationProblemData problemData, out double rmsError, out double relClassError) {
|
---|
71 | Dataset dataset = problemData.Dataset;
|
---|
72 | string targetVariable = problemData.TargetVariable;
|
---|
73 | IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables;
|
---|
74 | IEnumerable<int> rows = problemData.TrainingIndizes;
|
---|
75 | double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows);
|
---|
76 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
|
---|
77 | throw new NotSupportedException("Multinomial logit classification does not support NaN or infinity values in the input dataset.");
|
---|
78 |
|
---|
79 | alglib.logitmodel lm = new alglib.logitmodel();
|
---|
80 | alglib.mnlreport rep = new alglib.mnlreport();
|
---|
81 | int nRows = inputMatrix.GetLength(0);
|
---|
82 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
83 | double[] classValues = dataset.GetVariableValues(targetVariable).Distinct().OrderBy(x => x).ToArray();
|
---|
84 | int nClasses = classValues.Count();
|
---|
85 | // map original class values to values [0..nClasses-1]
|
---|
86 | Dictionary<double, double> classIndizes = new Dictionary<double, double>();
|
---|
87 | for (int i = 0; i < nClasses; i++) {
|
---|
88 | classIndizes[classValues[i]] = i;
|
---|
89 | }
|
---|
90 | for (int row = 0; row < nRows; row++) {
|
---|
91 | inputMatrix[row, nFeatures] = classIndizes[inputMatrix[row, nFeatures]];
|
---|
92 | }
|
---|
93 | int info;
|
---|
94 | alglib.mnltrainh(inputMatrix, nRows, nFeatures, nClasses, out info, out lm, out rep);
|
---|
95 | if (info != 1) throw new ArgumentException("Error in calculation of logit classification solution");
|
---|
96 |
|
---|
97 | rmsError = alglib.mnlrmserror(lm, inputMatrix, nRows);
|
---|
98 | relClassError = alglib.mnlrelclserror(lm, inputMatrix, nRows);
|
---|
99 |
|
---|
100 | MultinomialLogitClassificationSolution solution = new MultinomialLogitClassificationSolution(problemData, new MultinomialLogitModel(lm, targetVariable, allowedInputVariables, classValues));
|
---|
101 | return solution;
|
---|
102 | }
|
---|
103 | #endregion
|
---|
104 | }
|
---|
105 | }
|
---|