[14386] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[14386] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
[14891] | 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Parameters;
|
---|
[14386] | 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
[14936] | 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[14386] | 30 | [StorableClass]
|
---|
[14887] | 31 | // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf
|
---|
[14891] | 32 | [Item("ThinPlatePolysplineKernel", "A kernel function that uses the ThinPlatePolyspline function (||x-c||/Beta)^(Degree)*log(||x-c||/Beta) as described in \"Thin-Plate Spline Radial Basis Function Scheme for Advection-Diffusion Problems\" with beta as a scaling parameter.")]
|
---|
[14872] | 33 | public class ThinPlatePolysplineKernel : KernelBase {
|
---|
[14891] | 34 |
|
---|
| 35 | private const string DegreeParameterName = "Degree";
|
---|
[15156] | 36 |
|
---|
[14892] | 37 | public IFixedValueParameter<DoubleValue> DegreeParameter {
|
---|
[15157] | 38 | get { return (IFixedValueParameter<DoubleValue>)Parameters[DegreeParameterName]; }
|
---|
[14891] | 39 | }
|
---|
[14892] | 40 | public DoubleValue Degree {
|
---|
[14891] | 41 | get { return DegreeParameter.Value; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
[14386] | 44 | [StorableConstructor]
|
---|
| 45 | protected ThinPlatePolysplineKernel(bool deserializing) : base(deserializing) { }
|
---|
[15156] | 46 |
|
---|
[14872] | 47 | protected ThinPlatePolysplineKernel(ThinPlatePolysplineKernel original, Cloner cloner) : base(original, cloner) { }
|
---|
[15156] | 48 |
|
---|
[14386] | 49 | public ThinPlatePolysplineKernel() {
|
---|
[14891] | 50 | Parameters.Add(new FixedValueParameter<DoubleValue>(DegreeParameterName, "The degree of the kernel. Needs to be greater than zero.", new DoubleValue(2.0)));
|
---|
[14386] | 51 | }
|
---|
[15156] | 52 |
|
---|
[14386] | 53 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[14872] | 54 | return new ThinPlatePolysplineKernel(this, cloner);
|
---|
[14386] | 55 | }
|
---|
| 56 |
|
---|
| 57 | protected override double Get(double norm) {
|
---|
[15158] | 58 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance while Beta is null");
|
---|
[14887] | 59 | var beta = Beta.Value;
|
---|
[14891] | 60 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
| 61 | var d = norm / beta;
|
---|
| 62 | if (Math.Abs(d) < double.Epsilon) return 0;
|
---|
| 63 | return Math.Pow(d, Degree.Value) * Math.Log(d);
|
---|
[14386] | 64 | }
|
---|
| 65 |
|
---|
[14891] | 66 | // (Degree/beta) * (norm/beta)^Degree * log(norm/beta)
|
---|
[14386] | 67 | protected override double GetGradient(double norm) {
|
---|
[15164] | 68 | if (Beta == null) throw new InvalidOperationException("Can not calculate kernel distance gradient while Beta is null");
|
---|
[14887] | 69 | var beta = Beta.Value;
|
---|
[14891] | 70 | if (Math.Abs(beta) < double.Epsilon) return double.NaN;
|
---|
| 71 | var d = norm / beta;
|
---|
| 72 | if (Math.Abs(d) < double.Epsilon) return 0;
|
---|
| 73 | return Degree.Value / beta * Math.Pow(d, Degree.Value) * Math.Log(d);
|
---|
[14386] | 74 | }
|
---|
| 75 | }
|
---|
| 76 | }
|
---|