Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/KernelRidgeRegression/KernelFunctions/KernelBase.cs @ 14927

Last change on this file since 14927 was 14887, checked in by gkronber, 8 years ago

#2699: worked on kernel ridge regression. moved beta parameter to algorithm. reintroduced IKernel interface to restrict choice of kernel in kernel ridge regression. speed-up by cholesky decomposition and optimization of the calculation of the covariance matrix.

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
31  [StorableClass]
32  public abstract class KernelBase : ParameterizedNamedItem, IKernel {
33
34    #region Parameternames
35    private const string DistanceParameterName = "Distance";
36    #endregion
37    #region Parameterproperties
38    public ValueParameter<IDistance> DistanceParameter {
39      get { return Parameters[DistanceParameterName] as ValueParameter<IDistance>; }
40    }
41
42    [Storable]
43    public double? Beta { get; set; }
44    #endregion
45    #region Properties
46    public IDistance Distance {
47      get { return DistanceParameter.Value; }
48      set { DistanceParameter.Value = value; }
49    }
50
51    #endregion
52
53    [StorableConstructor]
54    protected KernelBase(bool deserializing) : base(deserializing) { }
55    [StorableHook(HookType.AfterDeserialization)]
56    private void AfterDeserialization() { }
57
58    protected KernelBase(KernelBase original, Cloner cloner)
59      : base(original, cloner) {
60      Beta = original.Beta;
61    }
62
63    protected KernelBase() {
64      Parameters.Add(new ValueParameter<IDistance>(DistanceParameterName, "The distance function used for kernel calculation"));
65      DistanceParameter.Value = new EuclideanDistance();
66    }
67
68    public double Get(object a, object b) {
69      return Get(Distance.Get(a, b));
70    }
71
72    protected abstract double Get(double norm);
73
74    public int GetNumberOfParameters(int numberOfVariables) {
75      return Beta.HasValue ? 0 : 1;
76    }
77
78    public void SetParameter(double[] p) {
79      if (p != null && p.Length == 1) Beta = new double?(p[0]);
80    }
81
82    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
83      if (p.Length != GetNumberOfParameters(columnIndices.Length)) throw new ArgumentException("Illegal parametrization");
84      var myClone = (KernelBase)Clone(new Cloner());
85      myClone.SetParameter(p);
86      var cov = new ParameterizedCovarianceFunction {
87        Covariance = (x, i, j) => myClone.Get(GetNorm(x, x, i, j, columnIndices)),
88        CrossCovariance = (x, xt, i, j) => myClone.Get(GetNorm(x, xt, i, j, columnIndices)),
89        CovarianceGradient = (x, i, j) => new List<double> { myClone.GetGradient(GetNorm(x, x, i, j, columnIndices)) }
90      };
91      return cov;
92    }
93
94    protected abstract double GetGradient(double norm);
95
96    protected double GetNorm(double[,] x, double[,] xt, int i, int j, int[] columnIndices) {
97      var dist = Distance as IDistance<IEnumerable<double>>;
98      if (dist == null) throw new ArgumentException("The distance needs to apply to double vectors");
99      var r1 = columnIndices.Select(c => x[i, c]);
100      var r2 = columnIndices.Select(c => xt[j, c]);
101      return dist.Get(r1, r2);
102    }
103  }
104}
Note: See TracBrowser for help on using the repository browser.