[12590] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12590] | 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
| 23 | using System;
|
---|
[12332] | 24 | using System.Collections.Generic;
|
---|
| 25 | using System.Diagnostics;
|
---|
| 26 | using System.Linq;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
[12590] | 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | // This class implements a greedy decision tree learner which selects splits with the maximum reduction in sum of squared errors.
|
---|
| 32 | // The tree builder also tracks variable relevance metrics based on the splits and improvement after the split.
|
---|
| 33 | // The implementation is tuned for gradient boosting where multiple trees have to be calculated for the same training data
|
---|
| 34 | // each time with a different target vector. Vectors of idx to allow iteration of intput variables in sorted order are
|
---|
| 35 | // pre-calculated so that optimal thresholds for splits can be calculated in O(n) for each input variable.
|
---|
| 36 | // After each split the row idx are partitioned in a left an right part.
|
---|
[12661] | 37 | internal class RegressionTreeBuilder {
|
---|
[12332] | 38 | private readonly IRandom random;
|
---|
| 39 | private readonly IRegressionProblemData problemData;
|
---|
| 40 |
|
---|
| 41 | private readonly int nCols;
|
---|
[12590] | 42 | private readonly double[][] x; // all training data (original order from problemData), x is constant
|
---|
[12697] | 43 | private double[] originalY; // the original target labels (from problemData), originalY is constant
|
---|
| 44 | private double[] curPred; // current predictions for originalY (in case we are using gradient boosting, otherwise = zeros), only necessary for line search
|
---|
| 45 |
|
---|
[12590] | 46 | private double[] y; // training labels (original order from problemData), y can be changed
|
---|
[12332] | 47 |
|
---|
| 48 | private Dictionary<string, double> sumImprovements; // for variable relevance calculation
|
---|
| 49 |
|
---|
| 50 | private readonly string[] allowedVariables; // all variables in shuffled order
|
---|
| 51 | private Dictionary<string, int> varName2Index; // maps the variable names to column indexes
|
---|
| 52 | private int effectiveVars; // number of variables that are used from allowedVariables
|
---|
| 53 |
|
---|
| 54 | private int effectiveRows; // number of rows that are used from
|
---|
| 55 | private readonly int[][] sortedIdxAll;
|
---|
| 56 | private readonly int[][] sortedIdx; // random selection from sortedIdxAll (for r < 1.0)
|
---|
| 57 |
|
---|
| 58 | // helper arrays which are allocated to maximal necessary size only once in the ctor
|
---|
| 59 | private readonly int[] internalIdx, which, leftTmp, rightTmp;
|
---|
| 60 | private readonly double[] outx;
|
---|
| 61 | private readonly int[] outSortedIdx;
|
---|
[12372] | 62 |
|
---|
| 63 | private RegressionTreeModel.TreeNode[] tree; // tree is represented as a flat array of nodes
|
---|
| 64 | private int curTreeNodeIdx; // the index where the next tree node is stored
|
---|
| 65 |
|
---|
[12632] | 66 | // This class represents information about potential splits.
|
---|
| 67 | // For each node generated the best splitting variable and threshold as well as
|
---|
| 68 | // the improvement from the split are stored in a priority queue
|
---|
| 69 | private class PartitionSplits {
|
---|
| 70 | public int ParentNodeIdx { get; set; } // the idx of the leaf node representing this partition
|
---|
| 71 | public int StartIdx { get; set; } // the start idx of the partition
|
---|
| 72 | public int EndIndex { get; set; } // the end idx of the partition
|
---|
| 73 | public string SplittingVariable { get; set; } // the best splitting variable
|
---|
| 74 | public double SplittingThreshold { get; set; } // the best threshold
|
---|
| 75 | public double SplittingImprovement { get; set; } // the improvement of the split (for priority queue)
|
---|
[12619] | 76 | }
|
---|
[12332] | 77 |
|
---|
[12632] | 78 | // this list hold partitions with the information about the best split (organized as a sorted queue)
|
---|
| 79 | private readonly IList<PartitionSplits> queue;
|
---|
| 80 |
|
---|
[12332] | 81 | // prepare and allocate buffer variables in ctor
|
---|
| 82 | public RegressionTreeBuilder(IRegressionProblemData problemData, IRandom random) {
|
---|
| 83 | this.problemData = problemData;
|
---|
| 84 | this.random = random;
|
---|
| 85 |
|
---|
| 86 | var rows = problemData.TrainingIndices.Count();
|
---|
| 87 |
|
---|
| 88 | this.nCols = problemData.AllowedInputVariables.Count();
|
---|
| 89 |
|
---|
| 90 | allowedVariables = problemData.AllowedInputVariables.ToArray();
|
---|
| 91 | varName2Index = new Dictionary<string, int>(allowedVariables.Length);
|
---|
| 92 | for (int i = 0; i < allowedVariables.Length; i++) varName2Index.Add(allowedVariables[i], i);
|
---|
| 93 |
|
---|
| 94 | sortedIdxAll = new int[nCols][];
|
---|
| 95 | sortedIdx = new int[nCols][];
|
---|
| 96 | sumImprovements = new Dictionary<string, double>();
|
---|
| 97 | internalIdx = new int[rows];
|
---|
| 98 | which = new int[rows];
|
---|
| 99 | leftTmp = new int[rows];
|
---|
| 100 | rightTmp = new int[rows];
|
---|
| 101 | outx = new double[rows];
|
---|
| 102 | outSortedIdx = new int[rows];
|
---|
[12632] | 103 | queue = new List<PartitionSplits>(100);
|
---|
[12332] | 104 |
|
---|
| 105 | x = new double[nCols][];
|
---|
[12697] | 106 | originalY = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
|
---|
| 107 | y = new double[originalY.Length];
|
---|
| 108 | Array.Copy(originalY, y, y.Length); // copy values (originalY is fixed, y is changed in gradient boosting)
|
---|
| 109 | curPred = Enumerable.Repeat(0.0, y.Length).ToArray(); // zeros
|
---|
[12332] | 110 |
|
---|
| 111 | int col = 0;
|
---|
| 112 | foreach (var inputVariable in problemData.AllowedInputVariables) {
|
---|
| 113 | x[col] = problemData.Dataset.GetDoubleValues(inputVariable, problemData.TrainingIndices).ToArray();
|
---|
| 114 | sortedIdxAll[col] = Enumerable.Range(0, rows).OrderBy(r => x[col][r]).ToArray();
|
---|
| 115 | sortedIdx[col] = new int[rows];
|
---|
| 116 | col++;
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 |
|
---|
[12590] | 120 | // specific interface that allows to specify the target labels and the training rows which is necessary when for gradient boosted trees
|
---|
[12697] | 121 | public IRegressionModel CreateRegressionTreeForGradientBoosting(double[] y, double[] curPred, int maxSize, int[] idx, ILossFunction lossFunction, double r = 0.5, double m = 0.5) {
|
---|
[12632] | 122 | Debug.Assert(maxSize > 0);
|
---|
[12619] | 123 | Debug.Assert(r > 0);
|
---|
| 124 | Debug.Assert(r <= 1.0);
|
---|
| 125 | Debug.Assert(y.Count() == this.y.Length);
|
---|
| 126 | Debug.Assert(m > 0);
|
---|
| 127 | Debug.Assert(m <= 1.0);
|
---|
[12332] | 128 |
|
---|
[12697] | 129 | // y and curPred are changed in gradient boosting
|
---|
[14095] | 130 | this.y = y;
|
---|
| 131 | this.curPred = curPred;
|
---|
[12332] | 132 |
|
---|
| 133 | // shuffle row idx
|
---|
| 134 | HeuristicLab.Random.ListExtensions.ShuffleInPlace(idx, random);
|
---|
| 135 |
|
---|
| 136 | int nRows = idx.Count();
|
---|
| 137 |
|
---|
[13992] | 138 | // shuffle variable names
|
---|
[12332] | 139 | HeuristicLab.Random.ListExtensions.ShuffleInPlace(allowedVariables, random);
|
---|
| 140 |
|
---|
[12590] | 141 | // only select a part of the rows and columns randomly
|
---|
[12332] | 142 | effectiveRows = (int)Math.Ceiling(nRows * r);
|
---|
| 143 | effectiveVars = (int)Math.Ceiling(nCols * m);
|
---|
| 144 |
|
---|
[12697] | 145 | // the which array is used for partitioing row idxs
|
---|
[12332] | 146 | Array.Clear(which, 0, which.Length);
|
---|
| 147 |
|
---|
| 148 | // mark selected rows
|
---|
| 149 | for (int row = 0; row < effectiveRows; row++) {
|
---|
[12590] | 150 | which[idx[row]] = 1; // we use the which vector as a temporary variable here
|
---|
[12332] | 151 | internalIdx[row] = idx[row];
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | for (int col = 0; col < nCols; col++) {
|
---|
| 155 | int i = 0;
|
---|
| 156 | for (int row = 0; row < nRows; row++) {
|
---|
| 157 | if (which[sortedIdxAll[col][row]] > 0) {
|
---|
[12590] | 158 | Debug.Assert(i < effectiveRows);
|
---|
[12332] | 159 | sortedIdx[col][i] = sortedIdxAll[col][row];
|
---|
| 160 | i++;
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
[12372] | 164 |
|
---|
[12632] | 165 | this.tree = new RegressionTreeModel.TreeNode[maxSize];
|
---|
| 166 | this.queue.Clear();
|
---|
[12372] | 167 | this.curTreeNodeIdx = 0;
|
---|
| 168 |
|
---|
[12632] | 169 | // start out with only one leaf node (constant prediction)
|
---|
| 170 | // and calculate the best split for this root node and enqueue it into a queue sorted by improvement throught the split
|
---|
[12332] | 171 | // start and end idx are inclusive
|
---|
[12697] | 172 | CreateLeafNode(0, effectiveRows - 1, lossFunction);
|
---|
[12619] | 173 |
|
---|
[12632] | 174 | // process the priority queue to complete the tree
|
---|
[12697] | 175 | CreateRegressionTreeFromQueue(maxSize, lossFunction);
|
---|
[12632] | 176 |
|
---|
[13993] | 177 | return new RegressionTreeModel(tree.ToArray(), problemData.TargetVariable);
|
---|
[12332] | 178 | }
|
---|
| 179 |
|
---|
| 180 |
|
---|
[13895] | 181 | // processes potential splits from the queue as long as splits are remaining and the maximum size of the tree is not reached
|
---|
[12697] | 182 | private void CreateRegressionTreeFromQueue(int maxNodes, ILossFunction lossFunction) {
|
---|
[12632] | 183 | while (queue.Any() && curTreeNodeIdx + 1 < maxNodes) { // two nodes are created in each loop
|
---|
| 184 | var f = queue[queue.Count - 1]; // last element has the largest improvement
|
---|
| 185 | queue.RemoveAt(queue.Count - 1);
|
---|
| 186 |
|
---|
[12619] | 187 | var startIdx = f.StartIdx;
|
---|
| 188 | var endIdx = f.EndIndex;
|
---|
| 189 |
|
---|
| 190 | Debug.Assert(endIdx - startIdx >= 0);
|
---|
| 191 | Debug.Assert(startIdx >= 0);
|
---|
| 192 | Debug.Assert(endIdx < internalIdx.Length);
|
---|
| 193 |
|
---|
[12632] | 194 | // split partition into left and right
|
---|
| 195 | int splitIdx;
|
---|
| 196 | SplitPartition(f.StartIdx, f.EndIndex, f.SplittingVariable, f.SplittingThreshold, out splitIdx);
|
---|
| 197 | Debug.Assert(splitIdx + 1 <= endIdx);
|
---|
| 198 | Debug.Assert(startIdx <= splitIdx);
|
---|
[12332] | 199 |
|
---|
[12632] | 200 | // create two leaf nodes (and enqueue best splits for both)
|
---|
[12697] | 201 | var leftTreeIdx = CreateLeafNode(startIdx, splitIdx, lossFunction);
|
---|
| 202 | var rightTreeIdx = CreateLeafNode(splitIdx + 1, endIdx, lossFunction);
|
---|
[12658] | 203 |
|
---|
| 204 | // overwrite existing leaf node with an internal node
|
---|
[13895] | 205 | tree[f.ParentNodeIdx] = new RegressionTreeModel.TreeNode(f.SplittingVariable, f.SplittingThreshold, leftTreeIdx, rightTreeIdx, weightLeft: (splitIdx - startIdx + 1) / (double)(endIdx - startIdx + 1));
|
---|
[12632] | 206 | }
|
---|
| 207 | }
|
---|
[12332] | 208 |
|
---|
| 209 |
|
---|
[12632] | 210 | // returns the index of the newly created tree node
|
---|
[12697] | 211 | private int CreateLeafNode(int startIdx, int endIdx, ILossFunction lossFunction) {
|
---|
[12658] | 212 | // write a leaf node
|
---|
[12697] | 213 | var val = lossFunction.LineSearch(originalY, curPred, internalIdx, startIdx, endIdx);
|
---|
[12658] | 214 | tree[curTreeNodeIdx] = new RegressionTreeModel.TreeNode(RegressionTreeModel.TreeNode.NO_VARIABLE, val);
|
---|
[12332] | 215 |
|
---|
[12632] | 216 | EnqueuePartitionSplit(curTreeNodeIdx, startIdx, endIdx);
|
---|
| 217 | curTreeNodeIdx++;
|
---|
| 218 | return curTreeNodeIdx - 1;
|
---|
[12619] | 219 | }
|
---|
[12332] | 220 |
|
---|
| 221 |
|
---|
[12632] | 222 | // calculates the optimal split for the partition [startIdx .. endIdx] (inclusive)
|
---|
| 223 | // which is represented by the leaf node with the specified nodeIdx
|
---|
| 224 | private void EnqueuePartitionSplit(int nodeIdx, int startIdx, int endIdx) {
|
---|
| 225 | double threshold, improvement;
|
---|
| 226 | string bestVariableName;
|
---|
| 227 | // only enqueue a new split if there are at least 2 rows left and a split is possible
|
---|
| 228 | if (startIdx < endIdx &&
|
---|
| 229 | FindBestVariableAndThreshold(startIdx, endIdx, out threshold, out bestVariableName, out improvement)) {
|
---|
| 230 | var split = new PartitionSplits() {
|
---|
| 231 | ParentNodeIdx = nodeIdx,
|
---|
| 232 | StartIdx = startIdx,
|
---|
| 233 | EndIndex = endIdx,
|
---|
| 234 | SplittingThreshold = threshold,
|
---|
| 235 | SplittingVariable = bestVariableName
|
---|
| 236 | };
|
---|
| 237 | InsertSortedQueue(split);
|
---|
| 238 | }
|
---|
[12619] | 239 | }
|
---|
[12332] | 240 |
|
---|
[12632] | 241 |
|
---|
| 242 | // routine for splitting a partition of rows stored in internalIdx between startIdx and endIdx into
|
---|
| 243 | // a left partition and a right partition using the given splittingVariable and threshold
|
---|
| 244 | // the splitIdx is the last index of the left partition
|
---|
| 245 | // splitIdx + 1 is the first index of the right partition
|
---|
[12619] | 246 | // startIdx and endIdx are inclusive
|
---|
[12632] | 247 | private void SplitPartition(int startIdx, int endIdx, string splittingVar, double threshold, out int splitIdx) {
|
---|
[12619] | 248 | int bestVarIdx = varName2Index[splittingVar];
|
---|
| 249 | // split - two pass
|
---|
[12332] | 250 |
|
---|
[12623] | 251 | // store which index goes into which partition
|
---|
[12619] | 252 | for (int k = startIdx; k <= endIdx; k++) {
|
---|
| 253 | if (x[bestVarIdx][internalIdx[k]] <= threshold)
|
---|
| 254 | which[internalIdx[k]] = -1; // left partition
|
---|
| 255 | else
|
---|
| 256 | which[internalIdx[k]] = 1; // right partition
|
---|
| 257 | }
|
---|
[12372] | 258 |
|
---|
[12619] | 259 | // partition sortedIdx for each variable
|
---|
| 260 | int i;
|
---|
| 261 | int j;
|
---|
| 262 | for (int col = 0; col < nCols; col++) {
|
---|
| 263 | i = 0;
|
---|
| 264 | j = 0;
|
---|
| 265 | int k;
|
---|
| 266 | for (k = startIdx; k <= endIdx; k++) {
|
---|
| 267 | Debug.Assert(Math.Abs(which[sortedIdx[col][k]]) == 1);
|
---|
| 268 |
|
---|
| 269 | if (which[sortedIdx[col][k]] < 0) {
|
---|
| 270 | leftTmp[i++] = sortedIdx[col][k];
|
---|
| 271 | } else {
|
---|
| 272 | rightTmp[j++] = sortedIdx[col][k];
|
---|
| 273 | }
|
---|
[12332] | 274 | }
|
---|
[12619] | 275 | Debug.Assert(i > 0); // at least on element in the left partition
|
---|
| 276 | Debug.Assert(j > 0); // at least one element in the right partition
|
---|
| 277 | Debug.Assert(i + j == endIdx - startIdx + 1);
|
---|
| 278 | k = startIdx;
|
---|
| 279 | for (int l = 0; l < i; l++) sortedIdx[col][k++] = leftTmp[l];
|
---|
| 280 | for (int l = 0; l < j; l++) sortedIdx[col][k++] = rightTmp[l];
|
---|
[12332] | 281 | }
|
---|
[12619] | 282 |
|
---|
| 283 | // partition row indices
|
---|
| 284 | i = startIdx;
|
---|
| 285 | j = endIdx;
|
---|
| 286 | while (i <= j) {
|
---|
| 287 | Debug.Assert(Math.Abs(which[internalIdx[i]]) == 1);
|
---|
| 288 | Debug.Assert(Math.Abs(which[internalIdx[j]]) == 1);
|
---|
| 289 | if (which[internalIdx[i]] < 0) i++;
|
---|
| 290 | else if (which[internalIdx[j]] > 0) j--;
|
---|
| 291 | else {
|
---|
| 292 | Debug.Assert(which[internalIdx[i]] > 0);
|
---|
| 293 | Debug.Assert(which[internalIdx[j]] < 0);
|
---|
| 294 | // swap
|
---|
| 295 | int tmp = internalIdx[i];
|
---|
| 296 | internalIdx[i] = internalIdx[j];
|
---|
| 297 | internalIdx[j] = tmp;
|
---|
| 298 | i++;
|
---|
| 299 | j--;
|
---|
| 300 | }
|
---|
| 301 | }
|
---|
| 302 | Debug.Assert(j + 1 == i);
|
---|
| 303 | Debug.Assert(i <= endIdx);
|
---|
| 304 | Debug.Assert(startIdx <= j);
|
---|
| 305 |
|
---|
| 306 | splitIdx = j;
|
---|
[12332] | 307 | }
|
---|
| 308 |
|
---|
[12632] | 309 | private bool FindBestVariableAndThreshold(int startIdx, int endIdx, out double threshold, out string bestVar, out double improvement) {
|
---|
[12619] | 310 | Debug.Assert(startIdx < endIdx + 1); // at least 2 elements
|
---|
[12332] | 311 |
|
---|
| 312 | int rows = endIdx - startIdx + 1;
|
---|
[12619] | 313 | Debug.Assert(rows >= 2);
|
---|
[12332] | 314 |
|
---|
| 315 | double sumY = 0.0;
|
---|
| 316 | for (int i = startIdx; i <= endIdx; i++) {
|
---|
| 317 | sumY += y[internalIdx[i]];
|
---|
| 318 | }
|
---|
| 319 |
|
---|
[12623] | 320 | // see description of calculation in FindBestThreshold
|
---|
| 321 | double bestImprovement = 1.0 / rows * sumY * sumY; // any improvement must be larger than this baseline
|
---|
[12332] | 322 | double bestThreshold = double.PositiveInfinity;
|
---|
[12619] | 323 | bestVar = RegressionTreeModel.TreeNode.NO_VARIABLE;
|
---|
[12332] | 324 |
|
---|
| 325 | for (int col = 0; col < effectiveVars; col++) {
|
---|
| 326 | // sort values for variable to prepare for threshold selection
|
---|
| 327 | var curVariable = allowedVariables[col];
|
---|
| 328 | var curVariableIdx = varName2Index[curVariable];
|
---|
| 329 | for (int i = startIdx; i <= endIdx; i++) {
|
---|
| 330 | var sortedI = sortedIdx[curVariableIdx][i];
|
---|
| 331 | outSortedIdx[i - startIdx] = sortedI;
|
---|
| 332 | outx[i - startIdx] = x[curVariableIdx][sortedI];
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 | double curImprovement;
|
---|
| 336 | double curThreshold;
|
---|
| 337 | FindBestThreshold(outx, outSortedIdx, rows, y, sumY, out curThreshold, out curImprovement);
|
---|
| 338 |
|
---|
| 339 | if (curImprovement > bestImprovement) {
|
---|
| 340 | bestImprovement = curImprovement;
|
---|
| 341 | bestThreshold = curThreshold;
|
---|
| 342 | bestVar = allowedVariables[col];
|
---|
| 343 | }
|
---|
| 344 | }
|
---|
[12619] | 345 | if (bestVar == RegressionTreeModel.TreeNode.NO_VARIABLE) {
|
---|
[12632] | 346 | // not successfull
|
---|
| 347 | threshold = double.PositiveInfinity;
|
---|
| 348 | improvement = double.NegativeInfinity;
|
---|
[12619] | 349 | return false;
|
---|
| 350 | } else {
|
---|
| 351 | UpdateVariableRelevance(bestVar, sumY, bestImprovement, rows);
|
---|
[12632] | 352 | improvement = bestImprovement;
|
---|
[12619] | 353 | threshold = bestThreshold;
|
---|
| 354 | return true;
|
---|
| 355 | }
|
---|
[12332] | 356 | }
|
---|
| 357 |
|
---|
| 358 | // x [0..N-1] contains rows sorted values in the range from [0..rows-1]
|
---|
| 359 | // sortedIdx [0..N-1] contains the idx of the values in x in the original dataset in the range from [0..rows-1]
|
---|
| 360 | // rows specifies the number of valid entries in x and sortedIdx
|
---|
| 361 | // y [0..N-1] contains the target values in original sorting order
|
---|
| 362 | // sumY is y.Sum()
|
---|
| 363 | //
|
---|
| 364 | // the routine returns the best threshold (x[i] + x[i+1]) / 2 for i = [0 .. rows-2] by calculating the reduction in squared error
|
---|
| 365 | // additionally the reduction in squared error is returned in bestImprovement
|
---|
| 366 | // if all elements of x are equal the routing fails to produce a threshold
|
---|
| 367 | private static void FindBestThreshold(double[] x, int[] sortedIdx, int rows, double[] y, double sumY, out double bestThreshold, out double bestImprovement) {
|
---|
[12619] | 368 | Debug.Assert(rows >= 2);
|
---|
[12332] | 369 |
|
---|
| 370 | double sl = 0.0;
|
---|
| 371 | double sr = sumY;
|
---|
| 372 | double nl = 0.0;
|
---|
| 373 | double nr = rows;
|
---|
| 374 |
|
---|
[12623] | 375 | bestImprovement = 1.0 / rows * sumY * sumY; // this is the baseline for the improvement
|
---|
[12332] | 376 | bestThreshold = double.NegativeInfinity;
|
---|
| 377 | // for all thresholds
|
---|
| 378 | // if we have n rows there are n-1 possible splits
|
---|
| 379 | for (int i = 0; i < rows - 1; i++) {
|
---|
| 380 | sl += y[sortedIdx[i]];
|
---|
| 381 | sr -= y[sortedIdx[i]];
|
---|
| 382 |
|
---|
| 383 | nl++;
|
---|
| 384 | nr--;
|
---|
| 385 | Debug.Assert(nl > 0);
|
---|
| 386 | Debug.Assert(nr > 0);
|
---|
| 387 |
|
---|
| 388 | if (x[i] < x[i + 1]) { // don't try to split when two elements are equal
|
---|
[12620] | 389 |
|
---|
| 390 | // goal is to find the split with leading to minimal total variance of left and right parts
|
---|
| 391 | // without partitioning the variance is var(y) = E(y²) - E(y)²
|
---|
| 392 | // = 1/n * sum(y²) - (1/n * sum(y))²
|
---|
[12623] | 393 | // ------------- ---------------
|
---|
| 394 | // constant baseline for improvement
|
---|
| 395 | //
|
---|
[12620] | 396 | // if we split into right and left part the overall variance is the weigthed combination nl/n * var(y_l) + nr/n * var(y_r)
|
---|
| 397 | // = nl/n * (1/nl * sum(y_l²) - (1/nl * sum(y_l))²) + nr/n * (1/nr * sum(y_r²) - (1/nr * sum(y_r))²)
|
---|
| 398 | // = 1/n * sum(y_l²) - 1/nl * 1/n * sum(y_l)² + 1/n * sum(y_r²) - 1/nr * 1/n * sum(y_r)²
|
---|
| 399 | // = 1/n * (sum(y_l²) + sum(y_r²)) - 1/n * (sum(y_l)² / nl + sum(y_r)² / nr)
|
---|
| 400 | // = 1/n * sum(y²) - 1/n * (sum(y_l)² / nl + sum(y_r)² / nr)
|
---|
| 401 | // -------------
|
---|
| 402 | // not changed by split (and the same for total variance without partitioning)
|
---|
| 403 | //
|
---|
| 404 | // therefore we need to find the maximum value (sum(y_l)² / nl + sum(y_r)² / nr) (ignoring the factor 1/n)
|
---|
| 405 | // and this value must be larger than 1/n * sum(y)² to be an improvement over no split
|
---|
| 406 |
|
---|
[12332] | 407 | double curQuality = sl * sl / nl + sr * sr / nr;
|
---|
| 408 |
|
---|
| 409 | if (curQuality > bestImprovement) {
|
---|
| 410 | bestThreshold = (x[i] + x[i + 1]) / 2.0;
|
---|
| 411 | bestImprovement = curQuality;
|
---|
| 412 | }
|
---|
| 413 | }
|
---|
| 414 | }
|
---|
| 415 |
|
---|
| 416 | // if all elements where the same then no split can be found
|
---|
| 417 | }
|
---|
| 418 |
|
---|
| 419 |
|
---|
[12632] | 420 | private void UpdateVariableRelevance(string bestVar, double sumY, double bestImprovement, int rows) {
|
---|
| 421 | if (string.IsNullOrEmpty(bestVar)) return;
|
---|
| 422 | // update variable relevance
|
---|
| 423 | double baseLine = 1.0 / rows * sumY * sumY; // if best improvement is equal to baseline then the split had no effect
|
---|
| 424 |
|
---|
| 425 | double delta = (bestImprovement - baseLine);
|
---|
| 426 | double v;
|
---|
| 427 | if (!sumImprovements.TryGetValue(bestVar, out v)) {
|
---|
| 428 | sumImprovements[bestVar] = delta;
|
---|
| 429 | }
|
---|
| 430 | sumImprovements[bestVar] = v + delta;
|
---|
| 431 | }
|
---|
| 432 |
|
---|
[12332] | 433 | public IEnumerable<KeyValuePair<string, double>> GetVariableRelevance() {
|
---|
[12590] | 434 | // values are scaled: the most important variable has relevance = 100
|
---|
[12332] | 435 | double scaling = 100 / sumImprovements.Max(t => t.Value);
|
---|
| 436 | return
|
---|
| 437 | sumImprovements
|
---|
| 438 | .Select(t => new KeyValuePair<string, double>(t.Key, t.Value * scaling))
|
---|
| 439 | .OrderByDescending(t => t.Value);
|
---|
| 440 | }
|
---|
[12632] | 441 |
|
---|
| 442 |
|
---|
| 443 | // insert a new parition split (find insertion point and start at first element of the queue)
|
---|
| 444 | // elements are removed from the queue at the last position
|
---|
| 445 | // O(n), splits could be organized as a heap to improve runtime (see alglib tsort)
|
---|
| 446 | private void InsertSortedQueue(PartitionSplits split) {
|
---|
| 447 | // find insertion position
|
---|
| 448 | int i = 0;
|
---|
| 449 | while (i < queue.Count && queue[i].SplittingImprovement < split.SplittingImprovement) { i++; }
|
---|
| 450 |
|
---|
| 451 | queue.Insert(i, split);
|
---|
| 452 | }
|
---|
[12332] | 453 | }
|
---|
| 454 | }
|
---|
| 455 |
|
---|
| 456 |
|
---|
| 457 |
|
---|
| 458 |
|
---|
| 459 |
|
---|
| 460 |
|
---|
| 461 |
|
---|
| 462 |
|
---|
| 463 |
|
---|
| 464 |
|
---|
| 465 |
|
---|
| 466 |
|
---|
| 467 |
|
---|
| 468 |
|
---|
| 469 |
|
---|
| 470 |
|
---|
| 471 |
|
---|
| 472 |
|
---|
| 473 |
|
---|