[12590] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12590] | 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
[12332] | 23 | using System.Collections.Generic;
|
---|
[12873] | 24 | using HeuristicLab.Core;
|
---|
[12332] | 25 |
|
---|
[12590] | 26 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[12607] | 27 | // represents an interface for loss functions used by gradient boosting
|
---|
| 28 | // target represents the target vector (original targets from the problem data, never changed)
|
---|
| 29 | // pred represents the current vector of predictions (a weighted combination of models learned so far, this vector is updated after each step)
|
---|
[12873] | 30 | public interface ILossFunction : IItem {
|
---|
[12696] | 31 | // returns the loss of the current prediction vector
|
---|
| 32 | double GetLoss(IEnumerable<double> target, IEnumerable<double> pred);
|
---|
[12590] | 33 |
|
---|
[12696] | 34 | // returns an enumerable of the loss gradient for each row
|
---|
| 35 | IEnumerable<double> GetLossGradient(IEnumerable<double> target, IEnumerable<double> pred);
|
---|
[12590] | 36 |
|
---|
[12697] | 37 | // returns the optimal value for the partition of rows stored in idx[startIdx] .. idx[endIdx] inclusive
|
---|
| 38 | double LineSearch(double[] targetArr, double[] predArr, int[] idx, int startIdx, int endIdx);
|
---|
[12332] | 39 | }
|
---|
| 40 | }
|
---|
[12607] | 41 |
|
---|
| 42 |
|
---|