[12868] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[12868] | 4 | * and the BEACON Center for the Study of Evolution in Action.
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 | #endregion
|
---|
| 22 |
|
---|
| 23 | using System.Collections.Generic;
|
---|
[13921] | 24 | using System.Linq;
|
---|
[12868] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | // this class is used as a surrogate for persistence of an actual GBT model
|
---|
| 33 | // since the actual GBT model would be very large when persisted we only store all necessary information to
|
---|
| 34 | // recalculate the actual GBT model on demand
|
---|
| 35 | [Item("Gradient boosted tree model", "")]
|
---|
[13941] | 36 | public sealed class GradientBoostedTreesModelSurrogate : RegressionModel, IGradientBoostedTreesModel {
|
---|
[12868] | 37 | // don't store the actual model!
|
---|
[13157] | 38 | private IGradientBoostedTreesModel actualModel; // the actual model is only recalculated when necessary
|
---|
[12868] | 39 |
|
---|
| 40 | [Storable]
|
---|
| 41 | private readonly IRegressionProblemData trainingProblemData;
|
---|
| 42 | [Storable]
|
---|
| 43 | private readonly uint seed;
|
---|
| 44 | [Storable]
|
---|
[12873] | 45 | private ILossFunction lossFunction;
|
---|
[12868] | 46 | [Storable]
|
---|
| 47 | private double r;
|
---|
| 48 | [Storable]
|
---|
| 49 | private double m;
|
---|
| 50 | [Storable]
|
---|
| 51 | private double nu;
|
---|
| 52 | [Storable]
|
---|
| 53 | private int iterations;
|
---|
| 54 | [Storable]
|
---|
| 55 | private int maxSize;
|
---|
| 56 |
|
---|
| 57 |
|
---|
[13941] | 58 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
[14236] | 59 | get
|
---|
| 60 | {
|
---|
| 61 | lock (actualModel) { if (actualModel == null) actualModel = RecalculateModel(); }
|
---|
| 62 | return actualModel.Models.SelectMany(x => x.VariablesUsedForPrediction).Distinct().OrderBy(x => x);
|
---|
| 63 | }
|
---|
[13921] | 64 | }
|
---|
| 65 |
|
---|
[12868] | 66 | [StorableConstructor]
|
---|
| 67 | private GradientBoostedTreesModelSurrogate(bool deserializing) : base(deserializing) { }
|
---|
| 68 |
|
---|
| 69 | private GradientBoostedTreesModelSurrogate(GradientBoostedTreesModelSurrogate original, Cloner cloner)
|
---|
| 70 | : base(original, cloner) {
|
---|
| 71 | if (original.actualModel != null) this.actualModel = cloner.Clone(original.actualModel);
|
---|
| 72 |
|
---|
| 73 | this.trainingProblemData = cloner.Clone(original.trainingProblemData);
|
---|
[12873] | 74 | this.lossFunction = cloner.Clone(original.lossFunction);
|
---|
[12868] | 75 | this.seed = original.seed;
|
---|
| 76 | this.iterations = original.iterations;
|
---|
| 77 | this.maxSize = original.maxSize;
|
---|
| 78 | this.r = original.r;
|
---|
| 79 | this.m = original.m;
|
---|
| 80 | this.nu = original.nu;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | // create only the surrogate model without an actual model
|
---|
[13921] | 84 | public GradientBoostedTreesModelSurrogate(IRegressionProblemData trainingProblemData, uint seed,
|
---|
| 85 | ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu)
|
---|
[13941] | 86 | : base(trainingProblemData.TargetVariable, "Gradient boosted tree model", string.Empty) {
|
---|
[12868] | 87 | this.trainingProblemData = trainingProblemData;
|
---|
| 88 | this.seed = seed;
|
---|
[12873] | 89 | this.lossFunction = lossFunction;
|
---|
[12868] | 90 | this.iterations = iterations;
|
---|
| 91 | this.maxSize = maxSize;
|
---|
| 92 | this.r = r;
|
---|
| 93 | this.m = m;
|
---|
| 94 | this.nu = nu;
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | // wrap an actual model in a surrograte
|
---|
[13921] | 98 | public GradientBoostedTreesModelSurrogate(IRegressionProblemData trainingProblemData, uint seed,
|
---|
| 99 | ILossFunction lossFunction, int iterations, int maxSize, double r, double m, double nu,
|
---|
| 100 | IGradientBoostedTreesModel model)
|
---|
[12873] | 101 | : this(trainingProblemData, seed, lossFunction, iterations, maxSize, r, m, nu) {
|
---|
[12868] | 102 | this.actualModel = model;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 106 | return new GradientBoostedTreesModelSurrogate(this, cloner);
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | // forward message to actual model (recalculate model first if necessary)
|
---|
[13941] | 110 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[14236] | 111 | lock (actualModel) { if (actualModel == null) actualModel = RecalculateModel(); }
|
---|
[12868] | 112 | return actualModel.GetEstimatedValues(dataset, rows);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
[13941] | 115 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[12868] | 116 | return new RegressionSolution(this, (IRegressionProblemData)problemData.Clone());
|
---|
| 117 | }
|
---|
| 118 |
|
---|
[13157] | 119 | private IGradientBoostedTreesModel RecalculateModel() {
|
---|
[12868] | 120 | return GradientBoostedTreesAlgorithmStatic.TrainGbm(trainingProblemData, lossFunction, maxSize, nu, r, m, iterations, seed).Model;
|
---|
| 121 | }
|
---|
[13157] | 122 |
|
---|
| 123 | public IEnumerable<IRegressionModel> Models {
|
---|
| 124 | get {
|
---|
[14236] | 125 | lock(actualModel) { if (actualModel == null) actualModel = RecalculateModel();}
|
---|
[13157] | 126 | return actualModel.Models;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | public IEnumerable<double> Weights {
|
---|
| 131 | get {
|
---|
[14236] | 132 | lock(actualModel) { if (actualModel == null) actualModel = RecalculateModel();}
|
---|
[13157] | 133 | return actualModel.Weights;
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
[12868] | 136 | }
|
---|
| 137 | }
|
---|