1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
28 | [StorableClass]
|
---|
29 | [Item(Name = "MeanLinear", Description = "Linear mean function for Gaussian processes.")]
|
---|
30 | public class MeanLinear : Item, IMeanFunction {
|
---|
31 | [Storable]
|
---|
32 | private double[] alpha;
|
---|
33 | public double[] Weights {
|
---|
34 | get {
|
---|
35 | if (alpha == null) return new double[0];
|
---|
36 | var copy = new double[alpha.Length];
|
---|
37 | Array.Copy(alpha, copy, copy.Length);
|
---|
38 | return copy;
|
---|
39 | }
|
---|
40 | }
|
---|
41 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
42 | return numberOfVariables;
|
---|
43 | }
|
---|
44 | [StorableConstructor]
|
---|
45 | protected MeanLinear(bool deserializing) : base(deserializing) { }
|
---|
46 | protected MeanLinear(MeanLinear original, Cloner cloner)
|
---|
47 | : base(original, cloner) {
|
---|
48 | if (original.alpha != null) {
|
---|
49 | this.alpha = new double[original.alpha.Length];
|
---|
50 | Array.Copy(original.alpha, alpha, original.alpha.Length);
|
---|
51 | }
|
---|
52 | }
|
---|
53 | public MeanLinear()
|
---|
54 | : base() {
|
---|
55 | }
|
---|
56 |
|
---|
57 | public void SetParameter(double[] hyp) {
|
---|
58 | this.alpha = new double[hyp.Length];
|
---|
59 | Array.Copy(hyp, alpha, hyp.Length);
|
---|
60 | }
|
---|
61 | public void SetData(double[,] x) {
|
---|
62 | // nothing to do
|
---|
63 | }
|
---|
64 |
|
---|
65 | public double[] GetMean(double[,] x) {
|
---|
66 | // sanity check
|
---|
67 | if (alpha.Length != x.GetLength(1)) throw new ArgumentException("The number of hyperparameters must match the number of variables for the linear mean function.");
|
---|
68 | int cols = x.GetLength(1);
|
---|
69 | int n = x.GetLength(0);
|
---|
70 | return (from i in Enumerable.Range(0, n)
|
---|
71 | let rowVector = from j in Enumerable.Range(0, cols)
|
---|
72 | select x[i, j]
|
---|
73 | select Util.ScalarProd(alpha, rowVector))
|
---|
74 | .ToArray();
|
---|
75 | }
|
---|
76 |
|
---|
77 | public double[] GetGradients(int k, double[,] x) {
|
---|
78 | int cols = x.GetLength(1);
|
---|
79 | int n = x.GetLength(0);
|
---|
80 | if (k > cols) throw new ArgumentException();
|
---|
81 | return (from r in Enumerable.Range(0, n)
|
---|
82 | select x[r, k]).ToArray();
|
---|
83 | }
|
---|
84 |
|
---|
85 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
86 | return new MeanLinear(this, cloner);
|
---|
87 | }
|
---|
88 | }
|
---|
89 | }
|
---|