[13120] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[15583] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13120] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 | using System;
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Parameters;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | [Item(Name = "MeanModel", Description = "A mean function for Gaussian processes that uses a regression solution created with a different algorithm to calculate the mean.")]
|
---|
[13136] | 33 | // essentially an adaptor which maps from IMeanFunction to IRegressionSolution
|
---|
[13120] | 34 | public sealed class MeanModel : ParameterizedNamedItem, IMeanFunction {
|
---|
| 35 | public IValueParameter<IRegressionSolution> RegressionSolutionParameter {
|
---|
| 36 | get { return (IValueParameter<IRegressionSolution>)Parameters["RegressionSolution"]; }
|
---|
| 37 | }
|
---|
| 38 | public IRegressionSolution RegressionSolution {
|
---|
| 39 | get { return RegressionSolutionParameter.Value; }
|
---|
| 40 | set { RegressionSolutionParameter.Value = value; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | [StorableConstructor]
|
---|
| 44 | private MeanModel(bool deserializing) : base(deserializing) { }
|
---|
| 45 | private MeanModel(MeanModel original, Cloner cloner)
|
---|
| 46 | : base(original, cloner) {
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public MeanModel()
|
---|
| 50 | : base("MeanModel", "A mean function for Gaussian processes that uses a regression solution created with a different algorithm to calculate the mean.") {
|
---|
| 51 | Parameters.Add(new ValueParameter<IRegressionSolution>("RegressionSolution", "The solution containing the model that should be used for the mean prediction."));
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | public MeanModel(IRegressionSolution solution)
|
---|
| 55 | : this() {
|
---|
| 56 | // here we cannot check if the model is actually compatible (uses only input variables that are available)
|
---|
| 57 | // we only assume that the list of allowed inputs in the regression solution is the same as the list of allowed
|
---|
| 58 | // inputs in the Gaussian process.
|
---|
| 59 | // later we might get an error or bad behaviour when the mean function is evaluated
|
---|
| 60 | RegressionSolution = solution;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 64 | return new MeanModel(this, cloner);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 68 | return 0; // no support for hyperparameters for regression models yet
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public void SetParameter(double[] p) {
|
---|
| 72 | if (p.Length > 0) throw new ArgumentException("No parameters allowed for model-based mean function.", "p");
|
---|
| 73 | }
|
---|
| 74 |
|
---|
[13721] | 75 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, int[] columnIndices) {
|
---|
[13120] | 76 | if (p.Length > 0) throw new ArgumentException("No parameters allowed for model-based mean function.", "p");
|
---|
| 77 | var solution = RegressionSolution;
|
---|
| 78 | var variableNames = solution.ProblemData.AllowedInputVariables.ToArray();
|
---|
[13721] | 79 | if (variableNames.Length != columnIndices.Length)
|
---|
[13120] | 80 | throw new ArgumentException("The number of input variables does not match in MeanModel");
|
---|
| 81 | var variableValues = variableNames.Select(_ => new List<double>() { 0.0 }).ToArray(); // or of zeros
|
---|
| 82 | // uses modifyable dataset to pass values to the model
|
---|
| 83 | var ds = new ModifiableDataset(variableNames, variableValues);
|
---|
| 84 | var mf = new ParameterizedMeanFunction();
|
---|
| 85 | var model = solution.Model; // effort for parameter access only once
|
---|
| 86 | mf.Mean = (x, i) => {
|
---|
| 87 | ds.ReplaceRow(0, Util.GetRow(x, i, columnIndices).OfType<object>());
|
---|
| 88 | return model.GetEstimatedValues(ds, 0.ToEnumerable()).Single(); // evaluate the model on the specified row only
|
---|
| 89 | };
|
---|
| 90 | mf.Gradient = (x, i, k) => {
|
---|
| 91 | if (k > 0)
|
---|
| 92 | throw new ArgumentException();
|
---|
| 93 | return 0.0;
|
---|
| 94 | };
|
---|
| 95 | return mf;
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|