1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | [Item(Name = "MeanLinear", Description = "Linear mean function for Gaussian processes.")]
|
---|
32 | public sealed class MeanLinear : ParameterizedNamedItem, IMeanFunction {
|
---|
33 | [Storable]
|
---|
34 | private double[] weights;
|
---|
35 | [Storable]
|
---|
36 | private readonly HyperParameter<DoubleArray> weightsParameter;
|
---|
37 | public IValueParameter<DoubleArray> WeightsParameter { get { return weightsParameter; } }
|
---|
38 |
|
---|
39 | [StorableConstructor]
|
---|
40 | private MeanLinear(bool deserializing) : base(deserializing) { }
|
---|
41 | private MeanLinear(MeanLinear original, Cloner cloner)
|
---|
42 | : base(original, cloner) {
|
---|
43 | if (original.weights != null) {
|
---|
44 | this.weights = new double[original.weights.Length];
|
---|
45 | Array.Copy(original.weights, weights, original.weights.Length);
|
---|
46 | }
|
---|
47 | weightsParameter = cloner.Clone(original.weightsParameter);
|
---|
48 | RegisterEvents();
|
---|
49 | }
|
---|
50 | public MeanLinear()
|
---|
51 | : base() {
|
---|
52 | this.weightsParameter = new HyperParameter<DoubleArray>("Weights", "The weights parameter for the linear mean function.");
|
---|
53 | Parameters.Add(weightsParameter);
|
---|
54 | RegisterEvents();
|
---|
55 | }
|
---|
56 |
|
---|
57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
58 | return new MeanLinear(this, cloner);
|
---|
59 | }
|
---|
60 |
|
---|
61 | [StorableHook(HookType.AfterDeserialization)]
|
---|
62 | private void AfterDeserialization() {
|
---|
63 | RegisterEvents();
|
---|
64 | }
|
---|
65 |
|
---|
66 | private void RegisterEvents() {
|
---|
67 | Util.AttachArrayChangeHandler<DoubleArray, double>(weightsParameter, () => {
|
---|
68 | weights = weightsParameter.Value.ToArray();
|
---|
69 | });
|
---|
70 | }
|
---|
71 |
|
---|
72 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
73 | return weightsParameter.Fixed ? 0 : numberOfVariables;
|
---|
74 | }
|
---|
75 |
|
---|
76 | public void SetParameter(double[] hyp) {
|
---|
77 | if (!weightsParameter.Fixed) {
|
---|
78 | weightsParameter.SetValue(new DoubleArray(hyp));
|
---|
79 | } else if (hyp.Length != 0) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for the linear mean function.", "hyp");
|
---|
80 | }
|
---|
81 |
|
---|
82 | public double[] GetMean(double[,] x) {
|
---|
83 | // sanity check
|
---|
84 | if (weights.Length != x.GetLength(1)) throw new ArgumentException("The number of hyperparameters must match the number of variables for the linear mean function.");
|
---|
85 | int cols = x.GetLength(1);
|
---|
86 | int n = x.GetLength(0);
|
---|
87 | return (from i in Enumerable.Range(0, n)
|
---|
88 | let rowVector = Enumerable.Range(0, cols).Select(j => x[i, j])
|
---|
89 | select Util.ScalarProd(weights, rowVector))
|
---|
90 | .ToArray();
|
---|
91 | }
|
---|
92 |
|
---|
93 | public double[] GetGradients(int k, double[,] x) {
|
---|
94 | int cols = x.GetLength(1);
|
---|
95 | int n = x.GetLength(0);
|
---|
96 | if (k > cols) throw new ArgumentException();
|
---|
97 | return (Enumerable.Range(0, n).Select(r => x[r, k])).ToArray();
|
---|
98 | }
|
---|
99 | }
|
---|
100 | }
|
---|