[8371] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8473] | 22 | using System;
|
---|
[8371] | 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
[8396] | 27 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
[8371] | 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 33 | [StorableClass]
|
---|
| 34 | [Item(Name = "GaussianProcessRegressionModelCreator",
|
---|
| 35 | Description = "Creates a Gaussian process model for regression given the data, the hyperparameters, a mean function, and a covariance function.")]
|
---|
| 36 | public sealed class GaussianProcessRegressionModelCreator : GaussianProcessModelCreator {
|
---|
| 37 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 38 |
|
---|
| 39 | #region Parameter Properties
|
---|
| 40 | public ILookupParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
| 41 | get { return (ILookupParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 42 | }
|
---|
| 43 | #endregion
|
---|
| 44 |
|
---|
| 45 | #region Properties
|
---|
[8375] | 46 | private IRegressionProblemData ProblemData {
|
---|
[8371] | 47 | get { return ProblemDataParameter.ActualValue; }
|
---|
| 48 | }
|
---|
| 49 | #endregion
|
---|
| 50 | [StorableConstructor]
|
---|
| 51 | private GaussianProcessRegressionModelCreator(bool deserializing) : base(deserializing) { }
|
---|
| 52 | private GaussianProcessRegressionModelCreator(GaussianProcessRegressionModelCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
| 53 | public GaussianProcessRegressionModelCreator()
|
---|
| 54 | : base() {
|
---|
| 55 | Parameters.Add(new LookupParameter<IRegressionProblemData>(ProblemDataParameterName, "The regression problem data for the Gaussian process model."));
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 59 | return new GaussianProcessRegressionModelCreator(this, cloner);
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public override IOperation Apply() {
|
---|
[8473] | 63 | try {
|
---|
| 64 | var model = Create(ProblemData, Hyperparameter.ToArray(), MeanFunction, CovarianceFunction);
|
---|
| 65 | ModelParameter.ActualValue = model;
|
---|
| 66 | NegativeLogLikelihoodParameter.ActualValue = new DoubleValue(model.NegativeLogLikelihood);
|
---|
[8484] | 67 | HyperparameterGradientsParameter.ActualValue = new RealVector(model.HyperparameterGradients);
|
---|
[8473] | 68 | return base.Apply();
|
---|
| 69 | }
|
---|
| 70 | catch (ArgumentException) { }
|
---|
| 71 | catch (alglib.alglibexception) { }
|
---|
| 72 | NegativeLogLikelihoodParameter.ActualValue = new DoubleValue(1E300);
|
---|
| 73 | HyperparameterGradientsParameter.ActualValue = new RealVector(Hyperparameter.Count());
|
---|
[8371] | 74 | return base.Apply();
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | public static IGaussianProcessModel Create(IRegressionProblemData problemData, double[] hyperparameter, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction) {
|
---|
| 78 | return new GaussianProcessModel(problemData.Dataset, problemData.TargetVariable, problemData.AllowedInputVariables, problemData.TrainingIndices, hyperparameter, meanFunction, covarianceFunction);
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | }
|
---|