Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessModel.cs @ 8471

Last change on this file since 8471 was 8463, checked in by gkronber, 12 years ago

#1902 improved GPR implementation

File size: 9.9 KB
RevLine 
[8323]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis;
29
[8371]30namespace HeuristicLab.Algorithms.DataAnalysis {
[8323]31  /// <summary>
32  /// Represents a Gaussian process model.
33  /// </summary>
34  [StorableClass]
35  [Item("GaussianProcessModel", "Represents a Gaussian process posterior.")]
36  public sealed class GaussianProcessModel : NamedItem, IGaussianProcessModel {
37    [Storable]
38    private double negativeLogLikelihood;
39    public double NegativeLogLikelihood {
40      get { return negativeLogLikelihood; }
41    }
42
43    [Storable]
44    private ICovarianceFunction covarianceFunction;
45    public ICovarianceFunction CovarianceFunction {
46      get { return covarianceFunction; }
47    }
48    [Storable]
49    private IMeanFunction meanFunction;
50    public IMeanFunction MeanFunction {
51      get { return meanFunction; }
52    }
53    [Storable]
54    private string targetVariable;
55    public string TargetVariable {
56      get { return targetVariable; }
57    }
58    [Storable]
59    private string[] allowedInputVariables;
60    public string[] AllowedInputVariables {
61      get { return allowedInputVariables; }
62    }
63
64    [Storable]
65    private double[] alpha;
66    [Storable]
67    private double sqrSigmaNoise;
68
69    [Storable]
70    private double[,] l;
71
72    [Storable]
73    private double[,] x;
74    [Storable]
[8463]75    private Scaling inputScaling;
76    [Storable]
77    private Scaling targetScaling;
[8323]78
79
80    [StorableConstructor]
81    private GaussianProcessModel(bool deserializing) : base(deserializing) { }
82    private GaussianProcessModel(GaussianProcessModel original, Cloner cloner)
83      : base(original, cloner) {
84      this.meanFunction = cloner.Clone(original.meanFunction);
85      this.covarianceFunction = cloner.Clone(original.covarianceFunction);
[8463]86      this.inputScaling = cloner.Clone(original.inputScaling);
87      this.targetScaling = cloner.Clone(original.targetScaling);
[8323]88      this.negativeLogLikelihood = original.negativeLogLikelihood;
89      this.targetVariable = original.targetVariable;
[8416]90      this.sqrSigmaNoise = original.sqrSigmaNoise;
91
92      // shallow copies of arrays because they cannot be modified
[8323]93      this.allowedInputVariables = original.allowedInputVariables;
94      this.alpha = original.alpha;
95      this.l = original.l;
96      this.x = original.x;
97    }
98    public GaussianProcessModel(Dataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
99      IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction)
100      : base() {
101      this.name = ItemName;
102      this.description = ItemDescription;
[8416]103      this.meanFunction = (IMeanFunction)meanFunction.Clone();
104      this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
[8323]105      this.targetVariable = targetVariable;
106      this.allowedInputVariables = allowedInputVariables.ToArray();
107
108      sqrSigmaNoise = Math.Exp(2.0 * hyp.First());
109      sqrSigmaNoise = Math.Max(10E-6, sqrSigmaNoise); // lower limit for the noise level
110
[8416]111      int nVariables = this.allowedInputVariables.Length;
112      this.meanFunction.SetParameter(hyp.Skip(1)
113        .Take(this.meanFunction.GetNumberOfParameters(nVariables))
114        .ToArray());
115      this.covarianceFunction.SetParameter(hyp.Skip(1 + this.meanFunction.GetNumberOfParameters(nVariables))
116        .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
117        .ToArray());
118
119      CalculateModel(ds, rows);
[8323]120    }
121
[8416]122    private void CalculateModel(Dataset ds, IEnumerable<int> rows) {
[8463]123      inputScaling = new Scaling(ds, allowedInputVariables, rows);
124      x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling);
[8323]125
126
[8463]127      targetScaling = new Scaling(ds, new string[] { targetVariable }, rows);
128      var y = targetScaling.GetScaledValues(ds, targetVariable, rows);
129
[8323]130      int n = x.GetLength(0);
131      l = new double[n, n];
132
[8416]133      meanFunction.SetData(x);
134      covarianceFunction.SetData(x);
[8323]135
136      // calculate means and covariances
[8366]137      double[] m = meanFunction.GetMean(x);
[8323]138      for (int i = 0; i < n; i++) {
139
140        for (int j = i; j < n; j++) {
141          l[j, i] = covarianceFunction.GetCovariance(i, j) / sqrSigmaNoise;
142          if (j == i) l[j, i] += 1.0;
143        }
144      }
145
146      // cholesky decomposition
147      int info;
148      alglib.densesolverreport denseSolveRep;
149
150      var res = alglib.trfac.spdmatrixcholesky(ref l, n, false);
151      if (!res) throw new InvalidOperationException("Matrix is not positive semidefinite");
152
153      // calculate sum of diagonal elements for likelihood
154      double diagSum = Enumerable.Range(0, n).Select(i => Math.Log(l[i, i])).Sum();
155
156      // solve for alpha
157      double[] ym = y.Zip(m, (a, b) => a - b).ToArray();
158
159      alglib.spdmatrixcholeskysolve(l, n, false, ym, out info, out denseSolveRep, out alpha);
160      for (int i = 0; i < alpha.Length; i++)
161        alpha[i] = alpha[i] / sqrSigmaNoise;
162      negativeLogLikelihood = 0.5 * Util.ScalarProd(ym, alpha) + diagSum + (n / 2.0) * Math.Log(2.0 * Math.PI * sqrSigmaNoise);
163    }
164
165    public double[] GetHyperparameterGradients() {
166      // derivatives
167      int n = x.GetLength(0);
168      int nAllowedVariables = x.GetLength(1);
169
170      int info;
[8463]171      alglib.matinvreport matInvRep;
[8323]172
[8463]173      alglib.spdmatrixcholeskyinverse(ref l, n, false, out info, out matInvRep);
174      if (info != 1) throw new ArgumentException("Can't invert matrix to calculate gradients.");
[8323]175      for (int i = 0; i < n; i++) {
[8463]176        for (int j = 0; j <= i; j++)
177          l[i, j] = l[i, j] / sqrSigmaNoise - alpha[i] * alpha[j];
[8323]178      }
179
[8463]180      double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => l[i, i]).Sum();
[8323]181
182      double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
183      for (int i = 0; i < meanGradients.Length; i++) {
[8366]184        var meanGrad = meanFunction.GetGradients(i, x);
[8323]185        meanGradients[i] = -Util.ScalarProd(meanGrad, alpha);
186      }
187
188      double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
[8366]189      if (covGradients.Length > 0) {
190        for (int i = 0; i < n; i++) {
[8463]191          for (int k = 0; k < covGradients.Length; k++) {
192            for (int j = 0; j < i; j++) {
193              covGradients[k] += l[i, j] * covarianceFunction.GetGradient(i, j, k);
[8366]194            }
[8463]195            covGradients[k] += 0.5 * l[i, i] * covarianceFunction.GetGradient(i, i, k);
[8323]196          }
197        }
198      }
199
200      return new double[] { noiseGradient }
201        .Concat(meanGradients)
202        .Concat(covGradients).ToArray();
203    }
204
205
206    public override IDeepCloneable Clone(Cloner cloner) {
207      return new GaussianProcessModel(this, cloner);
208    }
209
210    #region IRegressionModel Members
211    public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
212      return GetEstimatedValuesHelper(dataset, rows);
213    }
214    public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
215      return new GaussianProcessRegressionSolution(this, problemData);
216    }
217    IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
218      return CreateRegressionSolution(problemData);
219    }
220    #endregion
221
222    private IEnumerable<double> GetEstimatedValuesHelper(Dataset dataset, IEnumerable<int> rows) {
[8463]223      var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling);
[8323]224      int newN = newX.GetLength(0);
225      int n = x.GetLength(0);
226      // var predMean = new double[newN];
227      // predVar = new double[newN];
228
229
230
231      // var kss = new double[newN];
232      var Ks = new double[newN, n];
233      double[,] sWKs = new double[n, newN];
234      // double[,] v;
235
236
237      // for stddev
238      //covarianceFunction.SetParameter(covHyp, newX);
239      //kss = covarianceFunction.GetDiagonalCovariances();
240
[8416]241      covarianceFunction.SetData(x, newX);
242      meanFunction.SetData(newX);
[8366]243      var ms = meanFunction.GetMean(newX);
[8323]244      for (int i = 0; i < newN; i++) {
245
246        for (int j = 0; j < n; j++) {
247          Ks[i, j] = covarianceFunction.GetCovariance(j, i);
248          sWKs[j, i] = Ks[i, j] / Math.Sqrt(sqrSigmaNoise);
249        }
250      }
251
252      // for stddev
253      // alglib.rmatrixsolvem(l, n, sWKs, newN, true, out info, out denseSolveRep, out v);
254
[8463]255      double targetScaleMin, targetScaleMax;
256      targetScaling.GetScalingParameters(targetVariable, out targetScaleMin, out targetScaleMax);
257      return Enumerable.Range(0, newN)
258        .Select(i => ms[i] + Util.ScalarProd(Util.GetRow(Ks, i), alpha))
259        .Select(m => m * (targetScaleMax - targetScaleMin) + targetScaleMin);
260      //for (int i = 0; i < newN; i++) {
261      //  // predMean[i] = ms[i] + prod(GetRow(Ks, i), alpha);
262      //  // var sumV2 = prod(GetCol(v, i), GetCol(v, i));
263      //  // predVar[i] = kss[i] - sumV2;
264      //}
[8323]265
266    }
267  }
268}
Note: See TracBrowser for help on using the repository browser.