[8323] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
[8371] | 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8323] | 31 | /// <summary>
|
---|
| 32 | /// Represents a Gaussian process model.
|
---|
| 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
| 35 | [Item("GaussianProcessModel", "Represents a Gaussian process posterior.")]
|
---|
| 36 | public sealed class GaussianProcessModel : NamedItem, IGaussianProcessModel {
|
---|
| 37 | [Storable]
|
---|
| 38 | private double negativeLogLikelihood;
|
---|
| 39 | public double NegativeLogLikelihood {
|
---|
| 40 | get { return negativeLogLikelihood; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | [Storable]
|
---|
| 44 | private ICovarianceFunction covarianceFunction;
|
---|
| 45 | public ICovarianceFunction CovarianceFunction {
|
---|
| 46 | get { return covarianceFunction; }
|
---|
| 47 | }
|
---|
| 48 | [Storable]
|
---|
| 49 | private IMeanFunction meanFunction;
|
---|
| 50 | public IMeanFunction MeanFunction {
|
---|
| 51 | get { return meanFunction; }
|
---|
| 52 | }
|
---|
| 53 | [Storable]
|
---|
| 54 | private string targetVariable;
|
---|
| 55 | public string TargetVariable {
|
---|
| 56 | get { return targetVariable; }
|
---|
| 57 | }
|
---|
| 58 | [Storable]
|
---|
| 59 | private string[] allowedInputVariables;
|
---|
| 60 | public string[] AllowedInputVariables {
|
---|
| 61 | get { return allowedInputVariables; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | [Storable]
|
---|
| 65 | private double[] alpha;
|
---|
| 66 | [Storable]
|
---|
| 67 | private double sqrSigmaNoise;
|
---|
| 68 |
|
---|
| 69 | [Storable]
|
---|
| 70 | private double[,] l;
|
---|
| 71 |
|
---|
| 72 | [Storable]
|
---|
| 73 | private double[,] x;
|
---|
| 74 | [Storable]
|
---|
[8463] | 75 | private Scaling inputScaling;
|
---|
| 76 | [Storable]
|
---|
| 77 | private Scaling targetScaling;
|
---|
[8323] | 78 |
|
---|
| 79 |
|
---|
| 80 | [StorableConstructor]
|
---|
| 81 | private GaussianProcessModel(bool deserializing) : base(deserializing) { }
|
---|
| 82 | private GaussianProcessModel(GaussianProcessModel original, Cloner cloner)
|
---|
| 83 | : base(original, cloner) {
|
---|
| 84 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
| 85 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
[8463] | 86 | this.inputScaling = cloner.Clone(original.inputScaling);
|
---|
| 87 | this.targetScaling = cloner.Clone(original.targetScaling);
|
---|
[8323] | 88 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
| 89 | this.targetVariable = original.targetVariable;
|
---|
[8416] | 90 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
| 91 |
|
---|
| 92 | // shallow copies of arrays because they cannot be modified
|
---|
[8323] | 93 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
| 94 | this.alpha = original.alpha;
|
---|
| 95 | this.l = original.l;
|
---|
| 96 | this.x = original.x;
|
---|
| 97 | }
|
---|
| 98 | public GaussianProcessModel(Dataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
| 99 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction)
|
---|
| 100 | : base() {
|
---|
| 101 | this.name = ItemName;
|
---|
| 102 | this.description = ItemDescription;
|
---|
[8416] | 103 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
| 104 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
[8323] | 105 | this.targetVariable = targetVariable;
|
---|
| 106 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 107 |
|
---|
| 108 | sqrSigmaNoise = Math.Exp(2.0 * hyp.First());
|
---|
| 109 | sqrSigmaNoise = Math.Max(10E-6, sqrSigmaNoise); // lower limit for the noise level
|
---|
| 110 |
|
---|
[8416] | 111 | int nVariables = this.allowedInputVariables.Length;
|
---|
| 112 | this.meanFunction.SetParameter(hyp.Skip(1)
|
---|
| 113 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
| 114 | .ToArray());
|
---|
| 115 | this.covarianceFunction.SetParameter(hyp.Skip(1 + this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
| 116 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
| 117 | .ToArray());
|
---|
| 118 |
|
---|
| 119 | CalculateModel(ds, rows);
|
---|
[8323] | 120 | }
|
---|
| 121 |
|
---|
[8416] | 122 | private void CalculateModel(Dataset ds, IEnumerable<int> rows) {
|
---|
[8463] | 123 | inputScaling = new Scaling(ds, allowedInputVariables, rows);
|
---|
| 124 | x = AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputVariables, rows, inputScaling);
|
---|
[8323] | 125 |
|
---|
| 126 |
|
---|
[8463] | 127 | targetScaling = new Scaling(ds, new string[] { targetVariable }, rows);
|
---|
| 128 | var y = targetScaling.GetScaledValues(ds, targetVariable, rows);
|
---|
| 129 |
|
---|
[8323] | 130 | int n = x.GetLength(0);
|
---|
| 131 | l = new double[n, n];
|
---|
| 132 |
|
---|
[8416] | 133 | meanFunction.SetData(x);
|
---|
| 134 | covarianceFunction.SetData(x);
|
---|
[8323] | 135 |
|
---|
| 136 | // calculate means and covariances
|
---|
[8366] | 137 | double[] m = meanFunction.GetMean(x);
|
---|
[8323] | 138 | for (int i = 0; i < n; i++) {
|
---|
| 139 |
|
---|
| 140 | for (int j = i; j < n; j++) {
|
---|
| 141 | l[j, i] = covarianceFunction.GetCovariance(i, j) / sqrSigmaNoise;
|
---|
| 142 | if (j == i) l[j, i] += 1.0;
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | // cholesky decomposition
|
---|
| 147 | int info;
|
---|
| 148 | alglib.densesolverreport denseSolveRep;
|
---|
| 149 |
|
---|
| 150 | var res = alglib.trfac.spdmatrixcholesky(ref l, n, false);
|
---|
| 151 | if (!res) throw new InvalidOperationException("Matrix is not positive semidefinite");
|
---|
| 152 |
|
---|
| 153 | // calculate sum of diagonal elements for likelihood
|
---|
| 154 | double diagSum = Enumerable.Range(0, n).Select(i => Math.Log(l[i, i])).Sum();
|
---|
| 155 |
|
---|
| 156 | // solve for alpha
|
---|
| 157 | double[] ym = y.Zip(m, (a, b) => a - b).ToArray();
|
---|
| 158 |
|
---|
| 159 | alglib.spdmatrixcholeskysolve(l, n, false, ym, out info, out denseSolveRep, out alpha);
|
---|
| 160 | for (int i = 0; i < alpha.Length; i++)
|
---|
| 161 | alpha[i] = alpha[i] / sqrSigmaNoise;
|
---|
| 162 | negativeLogLikelihood = 0.5 * Util.ScalarProd(ym, alpha) + diagSum + (n / 2.0) * Math.Log(2.0 * Math.PI * sqrSigmaNoise);
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | public double[] GetHyperparameterGradients() {
|
---|
| 166 | // derivatives
|
---|
| 167 | int n = x.GetLength(0);
|
---|
| 168 | int nAllowedVariables = x.GetLength(1);
|
---|
| 169 |
|
---|
| 170 | int info;
|
---|
[8463] | 171 | alglib.matinvreport matInvRep;
|
---|
[8323] | 172 |
|
---|
[8463] | 173 | alglib.spdmatrixcholeskyinverse(ref l, n, false, out info, out matInvRep);
|
---|
| 174 | if (info != 1) throw new ArgumentException("Can't invert matrix to calculate gradients.");
|
---|
[8323] | 175 | for (int i = 0; i < n; i++) {
|
---|
[8463] | 176 | for (int j = 0; j <= i; j++)
|
---|
| 177 | l[i, j] = l[i, j] / sqrSigmaNoise - alpha[i] * alpha[j];
|
---|
[8323] | 178 | }
|
---|
| 179 |
|
---|
[8463] | 180 | double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => l[i, i]).Sum();
|
---|
[8323] | 181 |
|
---|
| 182 | double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
| 183 | for (int i = 0; i < meanGradients.Length; i++) {
|
---|
[8366] | 184 | var meanGrad = meanFunction.GetGradients(i, x);
|
---|
[8323] | 185 | meanGradients[i] = -Util.ScalarProd(meanGrad, alpha);
|
---|
| 186 | }
|
---|
| 187 |
|
---|
| 188 | double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
[8366] | 189 | if (covGradients.Length > 0) {
|
---|
| 190 | for (int i = 0; i < n; i++) {
|
---|
[8463] | 191 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
| 192 | for (int j = 0; j < i; j++) {
|
---|
| 193 | covGradients[k] += l[i, j] * covarianceFunction.GetGradient(i, j, k);
|
---|
[8366] | 194 | }
|
---|
[8463] | 195 | covGradients[k] += 0.5 * l[i, i] * covarianceFunction.GetGradient(i, i, k);
|
---|
[8323] | 196 | }
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | return new double[] { noiseGradient }
|
---|
| 201 | .Concat(meanGradients)
|
---|
| 202 | .Concat(covGradients).ToArray();
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 |
|
---|
| 206 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 207 | return new GaussianProcessModel(this, cloner);
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 | #region IRegressionModel Members
|
---|
| 211 | public IEnumerable<double> GetEstimatedValues(Dataset dataset, IEnumerable<int> rows) {
|
---|
| 212 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
| 213 | }
|
---|
| 214 | public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 215 | return new GaussianProcessRegressionSolution(this, problemData);
|
---|
| 216 | }
|
---|
| 217 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 218 | return CreateRegressionSolution(problemData);
|
---|
| 219 | }
|
---|
| 220 | #endregion
|
---|
| 221 |
|
---|
| 222 | private IEnumerable<double> GetEstimatedValuesHelper(Dataset dataset, IEnumerable<int> rows) {
|
---|
[8463] | 223 | var newX = AlglibUtil.PrepareAndScaleInputMatrix(dataset, allowedInputVariables, rows, inputScaling);
|
---|
[8323] | 224 | int newN = newX.GetLength(0);
|
---|
| 225 | int n = x.GetLength(0);
|
---|
| 226 | // var predMean = new double[newN];
|
---|
| 227 | // predVar = new double[newN];
|
---|
| 228 |
|
---|
| 229 |
|
---|
| 230 |
|
---|
| 231 | // var kss = new double[newN];
|
---|
| 232 | var Ks = new double[newN, n];
|
---|
| 233 | double[,] sWKs = new double[n, newN];
|
---|
| 234 | // double[,] v;
|
---|
| 235 |
|
---|
| 236 |
|
---|
| 237 | // for stddev
|
---|
| 238 | //covarianceFunction.SetParameter(covHyp, newX);
|
---|
| 239 | //kss = covarianceFunction.GetDiagonalCovariances();
|
---|
| 240 |
|
---|
[8416] | 241 | covarianceFunction.SetData(x, newX);
|
---|
| 242 | meanFunction.SetData(newX);
|
---|
[8366] | 243 | var ms = meanFunction.GetMean(newX);
|
---|
[8323] | 244 | for (int i = 0; i < newN; i++) {
|
---|
| 245 |
|
---|
| 246 | for (int j = 0; j < n; j++) {
|
---|
| 247 | Ks[i, j] = covarianceFunction.GetCovariance(j, i);
|
---|
| 248 | sWKs[j, i] = Ks[i, j] / Math.Sqrt(sqrSigmaNoise);
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 | // for stddev
|
---|
| 253 | // alglib.rmatrixsolvem(l, n, sWKs, newN, true, out info, out denseSolveRep, out v);
|
---|
| 254 |
|
---|
[8463] | 255 | double targetScaleMin, targetScaleMax;
|
---|
| 256 | targetScaling.GetScalingParameters(targetVariable, out targetScaleMin, out targetScaleMax);
|
---|
| 257 | return Enumerable.Range(0, newN)
|
---|
| 258 | .Select(i => ms[i] + Util.ScalarProd(Util.GetRow(Ks, i), alpha))
|
---|
| 259 | .Select(m => m * (targetScaleMax - targetScaleMin) + targetScaleMin);
|
---|
| 260 | //for (int i = 0; i < newN; i++) {
|
---|
| 261 | // // predMean[i] = ms[i] + prod(GetRow(Ks, i), alpha);
|
---|
| 262 | // // var sumV2 = prod(GetCol(v, i), GetCol(v, i));
|
---|
| 263 | // // predVar[i] = kss[i] - sumV2;
|
---|
| 264 | //}
|
---|
[8323] | 265 |
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 | }
|
---|