[8323] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8323] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 29 |
|
---|
[8371] | 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8323] | 31 | /// <summary>
|
---|
| 32 | /// Represents a Gaussian process model.
|
---|
| 33 | /// </summary>
|
---|
| 34 | [StorableClass]
|
---|
| 35 | [Item("GaussianProcessModel", "Represents a Gaussian process posterior.")]
|
---|
| 36 | public sealed class GaussianProcessModel : NamedItem, IGaussianProcessModel {
|
---|
| 37 | [Storable]
|
---|
| 38 | private double negativeLogLikelihood;
|
---|
| 39 | public double NegativeLogLikelihood {
|
---|
| 40 | get { return negativeLogLikelihood; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | [Storable]
|
---|
[8484] | 44 | private double[] hyperparameterGradients;
|
---|
| 45 | public double[] HyperparameterGradients {
|
---|
| 46 | get {
|
---|
| 47 | var copy = new double[hyperparameterGradients.Length];
|
---|
| 48 | Array.Copy(hyperparameterGradients, copy, copy.Length);
|
---|
| 49 | return copy;
|
---|
| 50 | }
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | [Storable]
|
---|
[8323] | 54 | private ICovarianceFunction covarianceFunction;
|
---|
| 55 | public ICovarianceFunction CovarianceFunction {
|
---|
| 56 | get { return covarianceFunction; }
|
---|
| 57 | }
|
---|
| 58 | [Storable]
|
---|
| 59 | private IMeanFunction meanFunction;
|
---|
| 60 | public IMeanFunction MeanFunction {
|
---|
| 61 | get { return meanFunction; }
|
---|
| 62 | }
|
---|
| 63 | [Storable]
|
---|
| 64 | private string targetVariable;
|
---|
| 65 | public string TargetVariable {
|
---|
| 66 | get { return targetVariable; }
|
---|
| 67 | }
|
---|
| 68 | [Storable]
|
---|
| 69 | private string[] allowedInputVariables;
|
---|
| 70 | public string[] AllowedInputVariables {
|
---|
| 71 | get { return allowedInputVariables; }
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | [Storable]
|
---|
| 75 | private double[] alpha;
|
---|
| 76 | [Storable]
|
---|
| 77 | private double sqrSigmaNoise;
|
---|
[8582] | 78 | public double SigmaNoise {
|
---|
| 79 | get { return Math.Sqrt(sqrSigmaNoise); }
|
---|
| 80 | }
|
---|
[8323] | 81 |
|
---|
| 82 | [Storable]
|
---|
[8982] | 83 | private double[] meanParameter;
|
---|
| 84 | [Storable]
|
---|
| 85 | private double[] covarianceParameter;
|
---|
| 86 |
|
---|
[12819] | 87 | private double[,] l; // used to be storable in previous versions (is calculated lazily now)
|
---|
| 88 | private double[,] x; // scaled training dataset, used to be storable in previous versions (is calculated lazily now)
|
---|
| 89 |
|
---|
| 90 | // BackwardsCompatibility3.4
|
---|
| 91 | #region Backwards compatible code, remove with 3.5
|
---|
| 92 | [Storable(Name = "l")] // restore if available but don't store anymore
|
---|
| 93 | private double[,] l_storable {
|
---|
| 94 | set { this.l = value; }
|
---|
| 95 | get {
|
---|
| 96 | if (trainingDataset == null) return l; // this model has been created with an old version
|
---|
| 97 | else return null; // if the training dataset is available l should not be serialized
|
---|
| 98 | }
|
---|
| 99 | }
|
---|
| 100 | [Storable(Name = "x")] // restore if available but don't store anymore
|
---|
| 101 | private double[,] x_storable {
|
---|
| 102 | set { this.x = value; }
|
---|
| 103 | get {
|
---|
| 104 | if (trainingDataset == null) return x; // this model has been created with an old version
|
---|
| 105 | else return null; // if the training dataset is available x should not be serialized
|
---|
| 106 | }
|
---|
| 107 | }
|
---|
| 108 | #endregion
|
---|
| 109 |
|
---|
| 110 |
|
---|
[8982] | 111 | [Storable]
|
---|
[12819] | 112 | private IDataset trainingDataset; // it is better to store the original training dataset completely because this is more efficient in persistence
|
---|
| 113 | [Storable]
|
---|
| 114 | private int[] trainingRows;
|
---|
[8323] | 115 |
|
---|
| 116 | [Storable]
|
---|
[8463] | 117 | private Scaling inputScaling;
|
---|
[8323] | 118 |
|
---|
| 119 |
|
---|
| 120 | [StorableConstructor]
|
---|
| 121 | private GaussianProcessModel(bool deserializing) : base(deserializing) { }
|
---|
| 122 | private GaussianProcessModel(GaussianProcessModel original, Cloner cloner)
|
---|
| 123 | : base(original, cloner) {
|
---|
| 124 | this.meanFunction = cloner.Clone(original.meanFunction);
|
---|
| 125 | this.covarianceFunction = cloner.Clone(original.covarianceFunction);
|
---|
[13118] | 126 | if (original.inputScaling != null)
|
---|
| 127 | this.inputScaling = cloner.Clone(original.inputScaling);
|
---|
[12819] | 128 | this.trainingDataset = cloner.Clone(original.trainingDataset);
|
---|
[8323] | 129 | this.negativeLogLikelihood = original.negativeLogLikelihood;
|
---|
| 130 | this.targetVariable = original.targetVariable;
|
---|
[8416] | 131 | this.sqrSigmaNoise = original.sqrSigmaNoise;
|
---|
[8982] | 132 | if (original.meanParameter != null) {
|
---|
| 133 | this.meanParameter = (double[])original.meanParameter.Clone();
|
---|
| 134 | }
|
---|
| 135 | if (original.covarianceParameter != null) {
|
---|
| 136 | this.covarianceParameter = (double[])original.covarianceParameter.Clone();
|
---|
| 137 | }
|
---|
[8416] | 138 |
|
---|
| 139 | // shallow copies of arrays because they cannot be modified
|
---|
[12819] | 140 | this.trainingRows = original.trainingRows;
|
---|
[8323] | 141 | this.allowedInputVariables = original.allowedInputVariables;
|
---|
| 142 | this.alpha = original.alpha;
|
---|
| 143 | this.l = original.l;
|
---|
| 144 | this.x = original.x;
|
---|
| 145 | }
|
---|
[12509] | 146 | public GaussianProcessModel(IDataset ds, string targetVariable, IEnumerable<string> allowedInputVariables, IEnumerable<int> rows,
|
---|
[13118] | 147 | IEnumerable<double> hyp, IMeanFunction meanFunction, ICovarianceFunction covarianceFunction,
|
---|
| 148 | bool scaleInputs = true)
|
---|
[8323] | 149 | : base() {
|
---|
| 150 | this.name = ItemName;
|
---|
| 151 | this.description = ItemDescription;
|
---|
[8416] | 152 | this.meanFunction = (IMeanFunction)meanFunction.Clone();
|
---|
| 153 | this.covarianceFunction = (ICovarianceFunction)covarianceFunction.Clone();
|
---|
[8323] | 154 | this.targetVariable = targetVariable;
|
---|
| 155 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
| 156 |
|
---|
| 157 |
|
---|
[8416] | 158 | int nVariables = this.allowedInputVariables.Length;
|
---|
[8982] | 159 | meanParameter = hyp
|
---|
[8416] | 160 | .Take(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
[8982] | 161 | .ToArray();
|
---|
| 162 |
|
---|
| 163 | covarianceParameter = hyp.Skip(this.meanFunction.GetNumberOfParameters(nVariables))
|
---|
| 164 | .Take(this.covarianceFunction.GetNumberOfParameters(nVariables))
|
---|
| 165 | .ToArray();
|
---|
[8473] | 166 | sqrSigmaNoise = Math.Exp(2.0 * hyp.Last());
|
---|
[13160] | 167 | try {
|
---|
| 168 | CalculateModel(ds, rows, scaleInputs);
|
---|
[13721] | 169 | }
|
---|
| 170 | catch (alglib.alglibexception ae) {
|
---|
[13160] | 171 | // wrap exception so that calling code doesn't have to know about alglib implementation
|
---|
| 172 | throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
|
---|
| 173 | }
|
---|
[8323] | 174 | }
|
---|
| 175 |
|
---|
[13118] | 176 | private void CalculateModel(IDataset ds, IEnumerable<int> rows, bool scaleInputs = true) {
|
---|
[12819] | 177 | this.trainingDataset = (IDataset)ds.Clone();
|
---|
| 178 | this.trainingRows = rows.ToArray();
|
---|
[13118] | 179 | this.inputScaling = scaleInputs ? new Scaling(ds, allowedInputVariables, rows) : null;
|
---|
[8323] | 180 |
|
---|
[13118] | 181 | x = GetData(ds, this.allowedInputVariables, this.trainingRows, this.inputScaling);
|
---|
| 182 |
|
---|
| 183 | IEnumerable<double> y;
|
---|
| 184 | y = ds.GetDoubleValues(targetVariable, rows);
|
---|
| 185 |
|
---|
[8323] | 186 | int n = x.GetLength(0);
|
---|
| 187 |
|
---|
[13721] | 188 | var columns = Enumerable.Range(0, x.GetLength(1)).ToArray();
|
---|
[12819] | 189 | // calculate cholesky decomposed (lower triangular) covariance matrix
|
---|
[13721] | 190 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns);
|
---|
[12819] | 191 | this.l = CalculateL(x, cov, sqrSigmaNoise);
|
---|
| 192 |
|
---|
| 193 | // calculate mean
|
---|
[13721] | 194 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, columns);
|
---|
[8982] | 195 | double[] m = Enumerable.Range(0, x.GetLength(0))
|
---|
| 196 | .Select(r => mean.Mean(x, r))
|
---|
| 197 | .ToArray();
|
---|
| 198 |
|
---|
[8323] | 199 | // calculate sum of diagonal elements for likelihood
|
---|
| 200 | double diagSum = Enumerable.Range(0, n).Select(i => Math.Log(l[i, i])).Sum();
|
---|
| 201 |
|
---|
| 202 | // solve for alpha
|
---|
| 203 | double[] ym = y.Zip(m, (a, b) => a - b).ToArray();
|
---|
| 204 |
|
---|
[12819] | 205 | int info;
|
---|
| 206 | alglib.densesolverreport denseSolveRep;
|
---|
| 207 |
|
---|
[8323] | 208 | alglib.spdmatrixcholeskysolve(l, n, false, ym, out info, out denseSolveRep, out alpha);
|
---|
| 209 | for (int i = 0; i < alpha.Length; i++)
|
---|
| 210 | alpha[i] = alpha[i] / sqrSigmaNoise;
|
---|
| 211 | negativeLogLikelihood = 0.5 * Util.ScalarProd(ym, alpha) + diagSum + (n / 2.0) * Math.Log(2.0 * Math.PI * sqrSigmaNoise);
|
---|
| 212 |
|
---|
| 213 | // derivatives
|
---|
| 214 | int nAllowedVariables = x.GetLength(1);
|
---|
| 215 |
|
---|
[8463] | 216 | alglib.matinvreport matInvRep;
|
---|
[8475] | 217 | double[,] lCopy = new double[l.GetLength(0), l.GetLength(1)];
|
---|
| 218 | Array.Copy(l, lCopy, lCopy.Length);
|
---|
[8323] | 219 |
|
---|
[8475] | 220 | alglib.spdmatrixcholeskyinverse(ref lCopy, n, false, out info, out matInvRep);
|
---|
[8463] | 221 | if (info != 1) throw new ArgumentException("Can't invert matrix to calculate gradients.");
|
---|
[8323] | 222 | for (int i = 0; i < n; i++) {
|
---|
[8463] | 223 | for (int j = 0; j <= i; j++)
|
---|
[8475] | 224 | lCopy[i, j] = lCopy[i, j] / sqrSigmaNoise - alpha[i] * alpha[j];
|
---|
[8323] | 225 | }
|
---|
| 226 |
|
---|
[8475] | 227 | double noiseGradient = sqrSigmaNoise * Enumerable.Range(0, n).Select(i => lCopy[i, i]).Sum();
|
---|
[8323] | 228 |
|
---|
| 229 | double[] meanGradients = new double[meanFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
[8982] | 230 | for (int k = 0; k < meanGradients.Length; k++) {
|
---|
[13721] | 231 | var meanGrad = new double[alpha.Length];
|
---|
| 232 | for (int g = 0; g < meanGrad.Length; g++)
|
---|
| 233 | meanGrad[g] = mean.Gradient(x, g, k);
|
---|
[8982] | 234 | meanGradients[k] = -Util.ScalarProd(meanGrad, alpha);
|
---|
[8323] | 235 | }
|
---|
| 236 |
|
---|
| 237 | double[] covGradients = new double[covarianceFunction.GetNumberOfParameters(nAllowedVariables)];
|
---|
[8366] | 238 | if (covGradients.Length > 0) {
|
---|
| 239 | for (int i = 0; i < n; i++) {
|
---|
[8484] | 240 | for (int j = 0; j < i; j++) {
|
---|
[8982] | 241 | var g = cov.CovarianceGradient(x, i, j).ToArray();
|
---|
[8484] | 242 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
| 243 | covGradients[k] += lCopy[i, j] * g[k];
|
---|
[8366] | 244 | }
|
---|
[8323] | 245 | }
|
---|
[8484] | 246 |
|
---|
[8982] | 247 | var gDiag = cov.CovarianceGradient(x, i, i).ToArray();
|
---|
[8484] | 248 | for (int k = 0; k < covGradients.Length; k++) {
|
---|
| 249 | // diag
|
---|
| 250 | covGradients[k] += 0.5 * lCopy[i, i] * gDiag[k];
|
---|
| 251 | }
|
---|
[8323] | 252 | }
|
---|
| 253 | }
|
---|
| 254 |
|
---|
[8484] | 255 | hyperparameterGradients =
|
---|
[8473] | 256 | meanGradients
|
---|
| 257 | .Concat(covGradients)
|
---|
| 258 | .Concat(new double[] { noiseGradient }).ToArray();
|
---|
[8484] | 259 |
|
---|
[8323] | 260 | }
|
---|
| 261 |
|
---|
[13118] | 262 | private static double[,] GetData(IDataset ds, IEnumerable<string> allowedInputs, IEnumerable<int> rows, Scaling scaling) {
|
---|
| 263 | if (scaling != null) {
|
---|
| 264 | return AlglibUtil.PrepareAndScaleInputMatrix(ds, allowedInputs, rows, scaling);
|
---|
| 265 | } else {
|
---|
| 266 | return AlglibUtil.PrepareInputMatrix(ds, allowedInputs, rows);
|
---|
| 267 | }
|
---|
[12819] | 268 | }
|
---|
[8323] | 269 |
|
---|
[12819] | 270 | private static double[,] CalculateL(double[,] x, ParameterizedCovarianceFunction cov, double sqrSigmaNoise) {
|
---|
| 271 | int n = x.GetLength(0);
|
---|
| 272 | var l = new double[n, n];
|
---|
| 273 |
|
---|
| 274 | // calculate covariances
|
---|
| 275 | for (int i = 0; i < n; i++) {
|
---|
| 276 | for (int j = i; j < n; j++) {
|
---|
| 277 | l[j, i] = cov.Covariance(x, i, j) / sqrSigmaNoise;
|
---|
| 278 | if (j == i) l[j, i] += 1.0;
|
---|
| 279 | }
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 | // cholesky decomposition
|
---|
| 283 | var res = alglib.trfac.spdmatrixcholesky(ref l, n, false);
|
---|
| 284 | if (!res) throw new ArgumentException("Matrix is not positive semidefinite");
|
---|
| 285 | return l;
|
---|
| 286 | }
|
---|
| 287 |
|
---|
| 288 |
|
---|
[8323] | 289 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 290 | return new GaussianProcessModel(this, cloner);
|
---|
| 291 | }
|
---|
| 292 |
|
---|
[8982] | 293 | // is called by the solution creator to set all parameter values of the covariance and mean function
|
---|
| 294 | // to the optimized values (necessary to make the values visible in the GUI)
|
---|
| 295 | public void FixParameters() {
|
---|
| 296 | covarianceFunction.SetParameter(covarianceParameter);
|
---|
| 297 | meanFunction.SetParameter(meanParameter);
|
---|
| 298 | covarianceParameter = new double[0];
|
---|
| 299 | meanParameter = new double[0];
|
---|
| 300 | }
|
---|
| 301 |
|
---|
[8323] | 302 | #region IRegressionModel Members
|
---|
[12509] | 303 | public IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
[8323] | 304 | return GetEstimatedValuesHelper(dataset, rows);
|
---|
| 305 | }
|
---|
| 306 | public GaussianProcessRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
[8528] | 307 | return new GaussianProcessRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
[8323] | 308 | }
|
---|
| 309 | IRegressionSolution IRegressionModel.CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
| 310 | return CreateRegressionSolution(problemData);
|
---|
| 311 | }
|
---|
| 312 | #endregion
|
---|
| 313 |
|
---|
[8623] | 314 |
|
---|
[12509] | 315 | private IEnumerable<double> GetEstimatedValuesHelper(IDataset dataset, IEnumerable<int> rows) {
|
---|
[13160] | 316 | try {
|
---|
| 317 | if (x == null) {
|
---|
| 318 | x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling);
|
---|
| 319 | }
|
---|
| 320 | int n = x.GetLength(0);
|
---|
[12819] | 321 |
|
---|
[13160] | 322 | double[,] newX = GetData(dataset, allowedInputVariables, rows, inputScaling);
|
---|
| 323 | int newN = newX.GetLength(0);
|
---|
[12819] | 324 |
|
---|
[13721] | 325 | var Ks = new double[newN][];
|
---|
| 326 | var columns = Enumerable.Range(0, newX.GetLength(1)).ToArray();
|
---|
| 327 | var mean = meanFunction.GetParameterizedMeanFunction(meanParameter, columns);
|
---|
[13160] | 328 | var ms = Enumerable.Range(0, newX.GetLength(0))
|
---|
| 329 | .Select(r => mean.Mean(newX, r))
|
---|
| 330 | .ToArray();
|
---|
[13721] | 331 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns);
|
---|
[13160] | 332 | for (int i = 0; i < newN; i++) {
|
---|
[13721] | 333 | Ks[i] = new double[n];
|
---|
[13160] | 334 | for (int j = 0; j < n; j++) {
|
---|
[13721] | 335 | Ks[i][j] = cov.CrossCovariance(x, newX, j, i);
|
---|
[13160] | 336 | }
|
---|
[8323] | 337 | }
|
---|
[13160] | 338 |
|
---|
| 339 | return Enumerable.Range(0, newN)
|
---|
[13721] | 340 | .Select(i => ms[i] + Util.ScalarProd(Ks[i], alpha));
|
---|
| 341 | }
|
---|
| 342 | catch (alglib.alglibexception ae) {
|
---|
[13160] | 343 | // wrap exception so that calling code doesn't have to know about alglib implementation
|
---|
| 344 | throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
|
---|
[8323] | 345 | }
|
---|
| 346 | }
|
---|
[8473] | 347 |
|
---|
[12509] | 348 | public IEnumerable<double> GetEstimatedVariance(IDataset dataset, IEnumerable<int> rows) {
|
---|
[13160] | 349 | try {
|
---|
| 350 | if (x == null) {
|
---|
| 351 | x = GetData(trainingDataset, allowedInputVariables, trainingRows, inputScaling);
|
---|
| 352 | }
|
---|
| 353 | int n = x.GetLength(0);
|
---|
[12819] | 354 |
|
---|
[13160] | 355 | var newX = GetData(dataset, allowedInputVariables, rows, inputScaling);
|
---|
| 356 | int newN = newX.GetLength(0);
|
---|
[8473] | 357 |
|
---|
[13160] | 358 | var kss = new double[newN];
|
---|
| 359 | double[,] sWKs = new double[n, newN];
|
---|
[13721] | 360 | var columns = Enumerable.Range(0, newX.GetLength(1)).ToArray();
|
---|
| 361 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(covarianceParameter, columns);
|
---|
[8473] | 362 |
|
---|
[13160] | 363 | if (l == null) {
|
---|
| 364 | l = CalculateL(x, cov, sqrSigmaNoise);
|
---|
| 365 | }
|
---|
[12819] | 366 |
|
---|
[13160] | 367 | // for stddev
|
---|
| 368 | for (int i = 0; i < newN; i++)
|
---|
| 369 | kss[i] = cov.Covariance(newX, i, i);
|
---|
[8473] | 370 |
|
---|
[13160] | 371 | for (int i = 0; i < newN; i++) {
|
---|
| 372 | for (int j = 0; j < n; j++) {
|
---|
| 373 | sWKs[j, i] = cov.CrossCovariance(x, newX, j, i) / Math.Sqrt(sqrSigmaNoise);
|
---|
| 374 | }
|
---|
[8473] | 375 | }
|
---|
| 376 |
|
---|
[13160] | 377 | // for stddev
|
---|
| 378 | alglib.ablas.rmatrixlefttrsm(n, newN, l, 0, 0, false, false, 0, ref sWKs, 0, 0);
|
---|
[8473] | 379 |
|
---|
[13160] | 380 | for (int i = 0; i < newN; i++) {
|
---|
[13721] | 381 | var col = Util.GetCol(sWKs, i).ToArray();
|
---|
| 382 | var sumV = Util.ScalarProd(col, col);
|
---|
[13160] | 383 | kss[i] += sqrSigmaNoise; // kss is V(f), add noise variance of predictive distibution to get V(y)
|
---|
| 384 | kss[i] -= sumV;
|
---|
| 385 | if (kss[i] < 0) kss[i] = 0;
|
---|
| 386 | }
|
---|
| 387 | return kss;
|
---|
[13721] | 388 | }
|
---|
| 389 | catch (alglib.alglibexception ae) {
|
---|
[13160] | 390 | // wrap exception so that calling code doesn't have to know about alglib implementation
|
---|
| 391 | throw new ArgumentException("There was a problem in the calculation of the Gaussian process model", ae);
|
---|
[8473] | 392 | }
|
---|
| 393 | }
|
---|
[8323] | 394 | }
|
---|
| 395 | }
|
---|