Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceSum.cs @ 8660

Last change on this file since 8660 was 8612, checked in by gkronber, 12 years ago

#1902 implemented all mean and covariance functions with parameters as ParameterizedNamedItems

File size: 3.1 KB
RevLine 
[8416]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[8463]22using System;
23using System.Collections.Generic;
[8323]24using System.Linq;
[8366]25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[8323]28
[8416]29namespace HeuristicLab.Algorithms.DataAnalysis {
[8366]30  [StorableClass]
31  [Item(Name = "CovarianceSum",
32    Description = "Sum covariance function for Gaussian processes.")]
[8612]33  public sealed class CovarianceSum : Item, ICovarianceFunction {
[8366]34    [Storable]
35    private ItemList<ICovarianceFunction> terms;
[8323]36
[8366]37    [Storable]
38    private int numberOfVariables;
39    public ItemList<ICovarianceFunction> Terms {
40      get { return terms; }
[8323]41    }
42
[8366]43    [StorableConstructor]
[8612]44    private CovarianceSum(bool deserializing)
[8366]45      : base(deserializing) {
[8323]46    }
47
[8612]48    private CovarianceSum(CovarianceSum original, Cloner cloner)
[8366]49      : base(original, cloner) {
[8416]50      this.terms = cloner.Clone(original.terms);
51      this.numberOfVariables = original.numberOfVariables;
[8323]52    }
53
[8366]54    public CovarianceSum()
55      : base() {
[8416]56      this.terms = new ItemList<ICovarianceFunction>();
[8323]57    }
58
[8366]59    public override IDeepCloneable Clone(Cloner cloner) {
60      return new CovarianceSum(this, cloner);
61    }
62
63    public int GetNumberOfParameters(int numberOfVariables) {
64      this.numberOfVariables = numberOfVariables;
65      return terms.Select(t => t.GetNumberOfParameters(numberOfVariables)).Sum();
66    }
67
[8416]68    public void SetParameter(double[] hyp) {
[8484]69      if (terms.Count == 0) throw new ArgumentException("At least one term is needed for sum covariance function.");
[8366]70      int offset = 0;
71      foreach (var t in terms) {
[8416]72        var numberOfParameters = t.GetNumberOfParameters(numberOfVariables);
73        t.SetParameter(hyp.Skip(offset).Take(numberOfParameters).ToArray());
74        offset += numberOfParameters;
[8323]75      }
76    }
[8484]77
78    public double GetCovariance(double[,] x, int i, int j) {
79      return terms.Select(t => t.GetCovariance(x, i, j)).Sum();
[8416]80    }
[8323]81
[8484]82    public IEnumerable<double> GetGradient(double[,] x, int i, int j) {
83      return terms.Select(t => t.GetGradient(x, i, j)).Aggregate(Enumerable.Concat);
[8366]84    }
85
[8484]86    public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) {
87      return terms.Select(t => t.GetCrossCovariance(x, xt, i, j)).Sum();
[8323]88    }
89  }
90}
Note: See TracBrowser for help on using the repository browser.