[8401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[8484] | 23 | using System.Collections.Generic;
|
---|
[8323] | 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[8612] | 26 | using HeuristicLab.Data;
|
---|
[8323] | 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
[8371] | 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8323] | 30 | [StorableClass]
|
---|
[8615] | 31 | [Item(Name = "CovarianceSquaredExponentialIso",
|
---|
[8323] | 32 | Description = "Isotropic squared exponential covariance function for Gaussian processes.")]
|
---|
[8615] | 33 | public sealed class CovarianceSquaredExponentialIso : ParameterizedNamedItem, ICovarianceFunction {
|
---|
[8323] | 34 | [Storable]
|
---|
| 35 | private double sf2;
|
---|
| 36 | [Storable]
|
---|
[8612] | 37 | private readonly HyperParameter<DoubleValue> scaleParameter;
|
---|
| 38 | public IValueParameter<DoubleValue> ScaleParameter { get { return scaleParameter; } }
|
---|
| 39 |
|
---|
| 40 | [Storable]
|
---|
[8491] | 41 | private double inverseLength;
|
---|
[8612] | 42 | [Storable]
|
---|
| 43 | private readonly HyperParameter<DoubleValue> inverseLengthParameter;
|
---|
| 44 | public IValueParameter<DoubleValue> InverseLengthParameter { get { return inverseLengthParameter; } }
|
---|
[8323] | 45 |
|
---|
| 46 | [StorableConstructor]
|
---|
[8615] | 47 | private CovarianceSquaredExponentialIso(bool deserializing)
|
---|
[8323] | 48 | : base(deserializing) {
|
---|
| 49 | }
|
---|
| 50 |
|
---|
[8615] | 51 | private CovarianceSquaredExponentialIso(CovarianceSquaredExponentialIso original, Cloner cloner)
|
---|
[8323] | 52 | : base(original, cloner) {
|
---|
| 53 | this.sf2 = original.sf2;
|
---|
[8612] | 54 | this.scaleParameter = cloner.Clone(original.scaleParameter);
|
---|
| 55 |
|
---|
[8491] | 56 | this.inverseLength = original.inverseLength;
|
---|
[8612] | 57 | this.inverseLengthParameter = cloner.Clone(original.inverseLengthParameter);
|
---|
| 58 |
|
---|
| 59 | RegisterEvents();
|
---|
[8323] | 60 | }
|
---|
| 61 |
|
---|
[8615] | 62 | public CovarianceSquaredExponentialIso()
|
---|
[8323] | 63 | : base() {
|
---|
[8612] | 64 | Name = ItemName;
|
---|
| 65 | Description = ItemDescription;
|
---|
| 66 |
|
---|
| 67 | this.scaleParameter = new HyperParameter<DoubleValue>("Scale", "The scale parameter of the isometric squared exponential covariance function.");
|
---|
| 68 | this.inverseLengthParameter = new HyperParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric squared exponential covariance function.");
|
---|
| 69 |
|
---|
| 70 | Parameters.Add(scaleParameter);
|
---|
| 71 | Parameters.Add(inverseLengthParameter);
|
---|
| 72 |
|
---|
| 73 | RegisterEvents();
|
---|
[8323] | 74 | }
|
---|
| 75 |
|
---|
| 76 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[8615] | 77 | return new CovarianceSquaredExponentialIso(this, cloner);
|
---|
[8323] | 78 | }
|
---|
| 79 |
|
---|
[8612] | 80 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 81 | private void AfterDeserialization() {
|
---|
| 82 | RegisterEvents();
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | private void RegisterEvents() {
|
---|
| 86 | Util.AttachValueChangeHandler<DoubleValue, double>(scaleParameter, () => { sf2 = scaleParameter.Value.Value; });
|
---|
| 87 | Util.AttachValueChangeHandler<DoubleValue, double>(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.Value; });
|
---|
| 88 | }
|
---|
| 89 |
|
---|
[8323] | 90 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[8612] | 91 | return
|
---|
| 92 | (scaleParameter.Fixed ? 0 : 1) +
|
---|
| 93 | (inverseLengthParameter.Fixed ? 0 : 1);
|
---|
[8323] | 94 | }
|
---|
| 95 |
|
---|
[8416] | 96 | public void SetParameter(double[] hyp) {
|
---|
[8612] | 97 | int i = 0;
|
---|
| 98 | if (!inverseLengthParameter.Fixed) {
|
---|
| 99 | inverseLengthParameter.SetValue(new DoubleValue(1.0 / Math.Exp(hyp[i])));
|
---|
| 100 | i++;
|
---|
| 101 | }
|
---|
| 102 | if (!scaleParameter.Fixed) {
|
---|
| 103 | scaleParameter.SetValue(new DoubleValue(Math.Exp(2 * hyp[i])));
|
---|
| 104 | i++;
|
---|
| 105 | }
|
---|
[8615] | 106 | if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSquaredExponentialIso", "hyp");
|
---|
[8416] | 107 | }
|
---|
[8323] | 108 |
|
---|
| 109 |
|
---|
[8484] | 110 | public double GetCovariance(double[,] x, int i, int j) {
|
---|
| 111 | double d = i == j
|
---|
| 112 | ? 0.0
|
---|
[8491] | 113 | : Util.SqrDist(x, i, j, inverseLength);
|
---|
[8484] | 114 | return sf2 * Math.Exp(-d / 2.0);
|
---|
[8323] | 115 | }
|
---|
| 116 |
|
---|
[8484] | 117 | public IEnumerable<double> GetGradient(double[,] x, int i, int j) {
|
---|
| 118 | double d = i == j
|
---|
| 119 | ? 0.0
|
---|
[8491] | 120 | : Util.SqrDist(x, i, j, inverseLength);
|
---|
[8484] | 121 | double g = Math.Exp(-d / 2.0);
|
---|
| 122 | yield return sf2 * g * d;
|
---|
| 123 | yield return 2.0 * sf2 * g;
|
---|
[8323] | 124 | }
|
---|
| 125 |
|
---|
[8484] | 126 | public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) {
|
---|
[8491] | 127 | double d = Util.SqrDist(x, i, xt, j, inverseLength);
|
---|
[8484] | 128 | return sf2 * Math.Exp(-d / 2.0);
|
---|
[8323] | 129 | }
|
---|
| 130 | }
|
---|
| 131 | }
|
---|