1 | using System;
|
---|
2 | using System.Linq;
|
---|
3 | using HeuristicLab.Common;
|
---|
4 | using HeuristicLab.Core;
|
---|
5 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Algorithms.DataAnalysis.GaussianProcess {
|
---|
8 | [StorableClass]
|
---|
9 | [Item(Name = "CovarianceSEiso",
|
---|
10 | Description = "Isotropic squared exponential covariance function for Gaussian processes.")]
|
---|
11 | public class CovarianceSEiso : Item, ICovarianceFunction {
|
---|
12 | [Storable]
|
---|
13 | private double[,] x;
|
---|
14 | [Storable]
|
---|
15 | private double[,] xt;
|
---|
16 | [Storable]
|
---|
17 | private double sf2;
|
---|
18 | [Storable]
|
---|
19 | private double l;
|
---|
20 | [Storable]
|
---|
21 | private bool symmetric;
|
---|
22 | private double[,] sd;
|
---|
23 |
|
---|
24 | [StorableConstructor]
|
---|
25 | protected CovarianceSEiso(bool deserializing)
|
---|
26 | : base(deserializing) {
|
---|
27 | }
|
---|
28 |
|
---|
29 | protected CovarianceSEiso(CovarianceSEiso original, Cloner cloner)
|
---|
30 | : base(original, cloner) {
|
---|
31 | // note: using shallow copies here
|
---|
32 | this.x = original.x;
|
---|
33 | this.xt = original.xt;
|
---|
34 | this.sf2 = original.sf2;
|
---|
35 | this.l = original.l;
|
---|
36 | this.symmetric = original.symmetric;
|
---|
37 | }
|
---|
38 |
|
---|
39 | public CovarianceSEiso()
|
---|
40 | : base() {
|
---|
41 | }
|
---|
42 |
|
---|
43 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
44 | return new CovarianceSEiso(this, cloner);
|
---|
45 | }
|
---|
46 |
|
---|
47 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
48 | return 2;
|
---|
49 | }
|
---|
50 |
|
---|
51 | public void SetParameter(double[] hyp, double[,] x) {
|
---|
52 | SetParameter(hyp, x, x);
|
---|
53 | this.symmetric = true;
|
---|
54 | }
|
---|
55 |
|
---|
56 |
|
---|
57 | public void SetParameter(double[] hyp, double[,] x, double[,] xt) {
|
---|
58 | this.l = Math.Exp(hyp[0]);
|
---|
59 | this.sf2 = Math.Exp(2 * hyp[1]);
|
---|
60 |
|
---|
61 | this.symmetric = false;
|
---|
62 | this.x = x;
|
---|
63 | this.xt = xt;
|
---|
64 | sd = null;
|
---|
65 | }
|
---|
66 |
|
---|
67 | public double GetCovariance(int i, int j) {
|
---|
68 | if (sd == null) CalculateSquaredDistances();
|
---|
69 | return sf2 * Math.Exp(-sd[i, j] / 2.0);
|
---|
70 | }
|
---|
71 |
|
---|
72 |
|
---|
73 | public double[] GetDiagonalCovariances() {
|
---|
74 | if (x != xt) throw new InvalidOperationException();
|
---|
75 | int rows = x.GetLength(0);
|
---|
76 | var sd = new double[rows];
|
---|
77 | for (int i = 0; i < rows; i++) {
|
---|
78 | sd[i] = Util.SqrDist(Util.GetRow(x, i).Select(e => e / l), Util.GetRow(xt, i).Select(e => e / l));
|
---|
79 | }
|
---|
80 | return sd.Select(d => sf2 * Math.Exp(-d / 2.0)).ToArray();
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | public double[] GetGradient(int i, int j) {
|
---|
85 | var res = new double[2];
|
---|
86 | res[0] = sf2 * Math.Exp(-sd[i, j] / 2.0) * sd[i, j];
|
---|
87 | res[1] = 2.0 * sf2 * Math.Exp(-sd[i, j] / 2.0);
|
---|
88 | return res;
|
---|
89 | }
|
---|
90 |
|
---|
91 | private void CalculateSquaredDistances() {
|
---|
92 | if (x.GetLength(1) != xt.GetLength(1)) throw new InvalidOperationException();
|
---|
93 | int rows = x.GetLength(0);
|
---|
94 | int cols = xt.GetLength(0);
|
---|
95 | sd = new double[rows, cols];
|
---|
96 | if (symmetric) {
|
---|
97 | for (int i = 0; i < rows; i++) {
|
---|
98 | for (int j = i; j < rows; j++) {
|
---|
99 | sd[i, j] = Util.SqrDist(Util.GetRow(x, i).Select(e => e / l), Util.GetRow(xt, j).Select(e => e / l));
|
---|
100 | sd[j, i] = sd[i, j];
|
---|
101 | }
|
---|
102 | }
|
---|
103 | } else {
|
---|
104 | for (int i = 0; i < rows; i++) {
|
---|
105 | for (int j = 0; j < cols; j++) {
|
---|
106 | sd[i, j] = Util.SqrDist(Util.GetRow(x, i).Select(e => e / l), Util.GetRow(xt, j).Select(e => e / l));
|
---|
107 | }
|
---|
108 | }
|
---|
109 | }
|
---|
110 | }
|
---|
111 | }
|
---|
112 | }
|
---|