1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | [Item(Name = "CovarianceSEard", Description = "Squared exponential covariance function with automatic relevance determination for Gaussian processes.")]
|
---|
32 | public class CovarianceSEard : Item, ICovarianceFunction {
|
---|
33 | [Storable]
|
---|
34 | private double sf2;
|
---|
35 | public double Scale { get { return sf2; } }
|
---|
36 |
|
---|
37 | [Storable]
|
---|
38 | private double[] inverseLength;
|
---|
39 | public double[] Length {
|
---|
40 | get {
|
---|
41 | if (inverseLength == null) return new double[0];
|
---|
42 | var copy = new double[inverseLength.Length];
|
---|
43 | Array.Copy(inverseLength, copy, copy.Length);
|
---|
44 | return copy;
|
---|
45 | }
|
---|
46 | }
|
---|
47 |
|
---|
48 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
49 | return numberOfVariables + 1;
|
---|
50 | }
|
---|
51 | [StorableConstructor]
|
---|
52 | protected CovarianceSEard(bool deserializing) : base(deserializing) { }
|
---|
53 | protected CovarianceSEard(CovarianceSEard original, Cloner cloner)
|
---|
54 | : base(original, cloner) {
|
---|
55 | if (original.inverseLength != null) {
|
---|
56 | this.inverseLength = new double[original.inverseLength.Length];
|
---|
57 | Array.Copy(original.inverseLength, this.inverseLength, inverseLength.Length);
|
---|
58 | }
|
---|
59 | this.sf2 = original.sf2;
|
---|
60 | }
|
---|
61 | public CovarianceSEard()
|
---|
62 | : base() {
|
---|
63 | }
|
---|
64 |
|
---|
65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
66 | return new CovarianceSEard(this, cloner);
|
---|
67 | }
|
---|
68 |
|
---|
69 | public void SetParameter(double[] hyp) {
|
---|
70 | this.inverseLength = hyp.Take(hyp.Length - 1).Select(p => 1.0 / Math.Exp(p)).ToArray();
|
---|
71 | this.sf2 = Math.Exp(2 * hyp[hyp.Length - 1]);
|
---|
72 | }
|
---|
73 |
|
---|
74 | public double GetCovariance(double[,] x, int i, int j) {
|
---|
75 | double d = i == j
|
---|
76 | ? 0.0
|
---|
77 | : Util.SqrDist(x, i, j, inverseLength);
|
---|
78 | return sf2 * Math.Exp(-d / 2.0);
|
---|
79 | }
|
---|
80 |
|
---|
81 | public IEnumerable<double> GetGradient(double[,] x, int i, int j) {
|
---|
82 | double d = i == j
|
---|
83 | ? 0.0
|
---|
84 | : Util.SqrDist(x, i, j, inverseLength);
|
---|
85 |
|
---|
86 | for (int ii = 0; ii < inverseLength.Length; ii++) {
|
---|
87 | double sqrDist = Util.SqrDist(x[i, ii] * inverseLength[ii], x[j, ii] * inverseLength[ii]);
|
---|
88 | yield return sf2 * Math.Exp(-d / 2.0) * sqrDist;
|
---|
89 | }
|
---|
90 | yield return 2.0 * sf2 * Math.Exp(-d / 2.0);
|
---|
91 | }
|
---|
92 |
|
---|
93 | public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j) {
|
---|
94 | double d = Util.SqrDist(x, i, xt, j, inverseLength);
|
---|
95 | return sf2 * Math.Exp(-d / 2.0);
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|