1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 |
|
---|
5 | namespace HeuristicLab.Algorithms.DataAnalysis.GaussianProcess {
|
---|
6 | public class CovariancePeriodic : ICovarianceFunction {
|
---|
7 | private double[,] x;
|
---|
8 | private double[,] xt;
|
---|
9 | private double sf2;
|
---|
10 | private double l;
|
---|
11 | private double[,] sd;
|
---|
12 | private double p;
|
---|
13 |
|
---|
14 | public int NumberOfParameters {
|
---|
15 | get { return 2; }
|
---|
16 | }
|
---|
17 |
|
---|
18 | public CovariancePeriodic(double p) {
|
---|
19 | this.p = p;
|
---|
20 | }
|
---|
21 |
|
---|
22 | public void SetMatrix(double[,] x) {
|
---|
23 | SetMatrix(x, x);
|
---|
24 | }
|
---|
25 |
|
---|
26 | public void SetMatrix(double[,] x, double[,] xt) {
|
---|
27 | this.x = x;
|
---|
28 | this.xt = xt;
|
---|
29 | sd = null;
|
---|
30 | }
|
---|
31 |
|
---|
32 | public void SetHyperparamter(double[] hyp) {
|
---|
33 | if (hyp.Length != 2) throw new ArgumentException();
|
---|
34 | this.l = Math.Exp(hyp[0]);
|
---|
35 | this.sf2 = Math.Exp(2 * hyp[1]);
|
---|
36 | sd = null;
|
---|
37 | }
|
---|
38 |
|
---|
39 | public double GetCovariance(int i, int j) {
|
---|
40 | if (sd == null) CalculateSquaredDistances();
|
---|
41 | double k = sd[i, j];
|
---|
42 | k = Math.PI * k / p;
|
---|
43 | k = Math.Sin(k) / l;
|
---|
44 | k = k * k;
|
---|
45 |
|
---|
46 | return sf2 * Math.Exp(-2.0 * k);
|
---|
47 | }
|
---|
48 |
|
---|
49 |
|
---|
50 | public double[] GetDiagonalCovariances() {
|
---|
51 | if (x != xt) throw new InvalidOperationException();
|
---|
52 | int rows = x.GetLength(0);
|
---|
53 | var cov = new double[rows];
|
---|
54 | for (int i = 0; i < rows; i++) {
|
---|
55 | double k = Math.Sqrt(SqrDist(GetRow(x, i), GetRow(xt, i)));
|
---|
56 | k = Math.PI * k / p;
|
---|
57 | k = Math.Sin(k) / l;
|
---|
58 | k = k * k;
|
---|
59 | cov[i] = sf2 * Math.Exp(-2.0 * k);
|
---|
60 | }
|
---|
61 | return cov;
|
---|
62 | }
|
---|
63 |
|
---|
64 | public double[] GetDerivatives(int i, int j) {
|
---|
65 |
|
---|
66 | var res = new double[2];
|
---|
67 | double k = sd[i, j];
|
---|
68 | k = Math.PI * k / p;
|
---|
69 | k = Math.Sin(k) / l;
|
---|
70 | k = k * k;
|
---|
71 | res[0] = 4 * sf2 * Math.Exp(-2 * k) * k;
|
---|
72 | res[1] = 2 * sf2 * Math.Exp(-2 * k);
|
---|
73 | return res;
|
---|
74 | }
|
---|
75 |
|
---|
76 | private void CalculateSquaredDistances() {
|
---|
77 | if (x.GetLength(1) != xt.GetLength(1)) throw new InvalidOperationException();
|
---|
78 | int rows = x.GetLength(0);
|
---|
79 | int cols = xt.GetLength(0);
|
---|
80 | sd = new double[rows, cols];
|
---|
81 | bool symmetric = x == xt;
|
---|
82 | for (int i = 0; i < rows; i++) {
|
---|
83 | for (int j = i; j < rows; j++) {
|
---|
84 | sd[i, j] = Math.Sqrt(SqrDist(GetRow(x, i), GetRow(xt, j)));
|
---|
85 | if (symmetric) {
|
---|
86 | sd[j, i] = sd[i, j];
|
---|
87 | } else {
|
---|
88 | sd[j, i] = Math.Sqrt(SqrDist(GetRow(x, j), GetRow(xt, i)));
|
---|
89 | }
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 |
|
---|
95 | private double SqrDist(IEnumerable<double> x, IEnumerable<double> y) {
|
---|
96 | var d0 = x.Zip(y, (a, b) => (a - b) * (a - b));
|
---|
97 | return Math.Max(0, d0.Sum());
|
---|
98 | }
|
---|
99 | private static IEnumerable<double> GetRow(double[,] x, int r) {
|
---|
100 | int cols = x.GetLength(1);
|
---|
101 | return Enumerable.Range(0, cols).Select(c => x[r, c]);
|
---|
102 | }
|
---|
103 | }
|
---|
104 | }
|
---|