1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | [Item(Name = "CovarianceMask",
|
---|
33 | Description = "Masking covariance function for dimension selection can be used to apply a covariance function only on certain input dimensions.")]
|
---|
34 | public sealed class CovarianceMask : ParameterizedNamedItem, ICovarianceFunction {
|
---|
35 | [Storable]
|
---|
36 | private int[] selectedDimensions;
|
---|
37 | [Storable]
|
---|
38 | private readonly ValueParameter<IntArray> selectedDimensionsParameter;
|
---|
39 | public IValueParameter<IntArray> SelectedDimensionsParameter {
|
---|
40 | get { return selectedDimensionsParameter; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | [Storable]
|
---|
44 | private ICovarianceFunction cov;
|
---|
45 | [Storable]
|
---|
46 | private readonly ValueParameter<ICovarianceFunction> covParameter;
|
---|
47 | public IValueParameter<ICovarianceFunction> CovarianceFunctionParameter {
|
---|
48 | get { return covParameter; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | [StorableConstructor]
|
---|
52 | private CovarianceMask(bool deserializing)
|
---|
53 | : base(deserializing) {
|
---|
54 | }
|
---|
55 |
|
---|
56 | private CovarianceMask(CovarianceMask original, Cloner cloner)
|
---|
57 | : base(original, cloner) {
|
---|
58 | this.selectedDimensionsParameter = cloner.Clone(original.selectedDimensionsParameter);
|
---|
59 | if (original.selectedDimensions != null) {
|
---|
60 | this.selectedDimensions = (int[])original.selectedDimensions.Clone();
|
---|
61 | }
|
---|
62 |
|
---|
63 | this.covParameter = cloner.Clone(original.covParameter);
|
---|
64 | this.cov = cloner.Clone(original.cov);
|
---|
65 | RegisterEvents();
|
---|
66 | }
|
---|
67 |
|
---|
68 | public CovarianceMask()
|
---|
69 | : base() {
|
---|
70 | Name = ItemName;
|
---|
71 | Description = ItemDescription;
|
---|
72 |
|
---|
73 | this.selectedDimensionsParameter = new ValueParameter<IntArray>("SelectedDimensions", "The dimensions on which the specified covariance function should be applied to.");
|
---|
74 | this.covParameter = new ValueParameter<ICovarianceFunction>("CovarianceFunction", "The covariance function that should be scaled.", new CovarianceSquaredExponentialIso());
|
---|
75 | cov = covParameter.Value;
|
---|
76 |
|
---|
77 | Parameters.Add(selectedDimensionsParameter);
|
---|
78 | Parameters.Add(covParameter);
|
---|
79 |
|
---|
80 | RegisterEvents();
|
---|
81 | }
|
---|
82 |
|
---|
83 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
84 | return new CovarianceMask(this, cloner);
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableHook(HookType.AfterDeserialization)]
|
---|
88 | private void AfterDeserialization() {
|
---|
89 | RegisterEvents();
|
---|
90 | }
|
---|
91 |
|
---|
92 | private void RegisterEvents() {
|
---|
93 | Util.AttachArrayChangeHandler<IntArray, int>(selectedDimensionsParameter, () => {
|
---|
94 | selectedDimensions = selectedDimensionsParameter.Value
|
---|
95 | .OrderBy(x => x)
|
---|
96 | .Distinct()
|
---|
97 | .ToArray();
|
---|
98 | if (selectedDimensions.Length == 0) selectedDimensions = null;
|
---|
99 | });
|
---|
100 | covParameter.ValueChanged += (sender, args) => { cov = covParameter.Value; };
|
---|
101 | }
|
---|
102 |
|
---|
103 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
104 | if (selectedDimensions == null) return cov.GetNumberOfParameters(numberOfVariables);
|
---|
105 | else return cov.GetNumberOfParameters(selectedDimensions.Length);
|
---|
106 | }
|
---|
107 |
|
---|
108 | public void SetParameter(double[] hyp) {
|
---|
109 | cov.SetParameter(hyp);
|
---|
110 | }
|
---|
111 |
|
---|
112 | public double GetCovariance(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
113 | return cov.GetCovariance(x, i, j, selectedDimensions);
|
---|
114 | }
|
---|
115 |
|
---|
116 | public IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
117 | return cov.GetGradient(x, i, j, selectedDimensions);
|
---|
118 | }
|
---|
119 |
|
---|
120 | public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j, IEnumerable<int> columnIndices) {
|
---|
121 | return cov.GetCrossCovariance(x, xt, i, j, selectedDimensions);
|
---|
122 | }
|
---|
123 | }
|
---|
124 | }
|
---|