[8416] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[8463] | 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[8323] | 24 | using System.Linq;
|
---|
[8982] | 25 | using System.Linq.Expressions;
|
---|
[8366] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[8323] | 29 |
|
---|
[8416] | 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8366] | 31 | [StorableClass]
|
---|
| 32 | [Item(Name = "CovarianceSum",
|
---|
| 33 | Description = "Sum covariance function for Gaussian processes.")]
|
---|
[8612] | 34 | public sealed class CovarianceSum : Item, ICovarianceFunction {
|
---|
[8366] | 35 | [Storable]
|
---|
| 36 | private ItemList<ICovarianceFunction> terms;
|
---|
[8323] | 37 |
|
---|
[8366] | 38 | [Storable]
|
---|
| 39 | private int numberOfVariables;
|
---|
| 40 | public ItemList<ICovarianceFunction> Terms {
|
---|
| 41 | get { return terms; }
|
---|
[8323] | 42 | }
|
---|
| 43 |
|
---|
[8366] | 44 | [StorableConstructor]
|
---|
[8612] | 45 | private CovarianceSum(bool deserializing)
|
---|
[8366] | 46 | : base(deserializing) {
|
---|
[8323] | 47 | }
|
---|
| 48 |
|
---|
[8612] | 49 | private CovarianceSum(CovarianceSum original, Cloner cloner)
|
---|
[8366] | 50 | : base(original, cloner) {
|
---|
[8416] | 51 | this.terms = cloner.Clone(original.terms);
|
---|
| 52 | this.numberOfVariables = original.numberOfVariables;
|
---|
[8323] | 53 | }
|
---|
| 54 |
|
---|
[8366] | 55 | public CovarianceSum()
|
---|
| 56 | : base() {
|
---|
[8416] | 57 | this.terms = new ItemList<ICovarianceFunction>();
|
---|
[8323] | 58 | }
|
---|
| 59 |
|
---|
[8366] | 60 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 61 | return new CovarianceSum(this, cloner);
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 65 | this.numberOfVariables = numberOfVariables;
|
---|
| 66 | return terms.Select(t => t.GetNumberOfParameters(numberOfVariables)).Sum();
|
---|
| 67 | }
|
---|
| 68 |
|
---|
[8982] | 69 | public void SetParameter(double[] p) {
|
---|
[8366] | 70 | int offset = 0;
|
---|
| 71 | foreach (var t in terms) {
|
---|
[8416] | 72 | var numberOfParameters = t.GetNumberOfParameters(numberOfVariables);
|
---|
[8982] | 73 | t.SetParameter(p.Skip(offset).Take(numberOfParameters).ToArray());
|
---|
[8416] | 74 | offset += numberOfParameters;
|
---|
[8323] | 75 | }
|
---|
| 76 | }
|
---|
[8484] | 77 |
|
---|
[8982] | 78 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 79 | if (terms.Count == 0) throw new ArgumentException("at least one term is necessary for the product covariance function.");
|
---|
| 80 | var functions = new List<ParameterizedCovarianceFunction>();
|
---|
| 81 | foreach (var t in terms) {
|
---|
| 82 | var numberOfParameters = t.GetNumberOfParameters(numberOfVariables);
|
---|
| 83 | functions.Add(t.GetParameterizedCovarianceFunction(p.Take(numberOfParameters).ToArray(), columnIndices));
|
---|
| 84 | p = p.Skip(numberOfParameters).ToArray();
|
---|
| 85 | }
|
---|
[8323] | 86 |
|
---|
[8982] | 87 | var sum = new ParameterizedCovarianceFunction();
|
---|
| 88 | sum.Covariance = (x, i, j) => functions.Select(e => e.Covariance(x, i, j)).Sum();
|
---|
| 89 | sum.CrossCovariance = (x, xt, i, j) => functions.Select(e => e.CrossCovariance(x, xt, i, j)).Sum();
|
---|
| 90 | sum.CovarianceGradient = (x, i, j) => functions.Select(e => e.CovarianceGradient(x, i, j)).Aggregate(Enumerable.Concat);
|
---|
| 91 | return sum;
|
---|
[8366] | 92 | }
|
---|
[8323] | 93 | }
|
---|
| 94 | }
|
---|