Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceSum.cs @ 12341

Last change on this file since 12341 was 12012, checked in by ascheibe, 10 years ago

#2212 merged r12008, r12009, r12010 back into trunk

File size: 3.6 KB
RevLine 
[8416]1#region License Information
2/* HeuristicLab
[12012]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[8416]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[8463]22using System;
23using System.Collections.Generic;
[8323]24using System.Linq;
[8982]25using System.Linq.Expressions;
[8366]26using HeuristicLab.Common;
27using HeuristicLab.Core;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[8323]29
[8416]30namespace HeuristicLab.Algorithms.DataAnalysis {
[8366]31  [StorableClass]
32  [Item(Name = "CovarianceSum",
33    Description = "Sum covariance function for Gaussian processes.")]
[8612]34  public sealed class CovarianceSum : Item, ICovarianceFunction {
[8366]35    [Storable]
36    private ItemList<ICovarianceFunction> terms;
[8323]37
[8366]38    [Storable]
39    private int numberOfVariables;
40    public ItemList<ICovarianceFunction> Terms {
41      get { return terms; }
[8323]42    }
43
[8366]44    [StorableConstructor]
[8612]45    private CovarianceSum(bool deserializing)
[8366]46      : base(deserializing) {
[8323]47    }
48
[8612]49    private CovarianceSum(CovarianceSum original, Cloner cloner)
[8366]50      : base(original, cloner) {
[8416]51      this.terms = cloner.Clone(original.terms);
52      this.numberOfVariables = original.numberOfVariables;
[8323]53    }
54
[8366]55    public CovarianceSum()
56      : base() {
[8416]57      this.terms = new ItemList<ICovarianceFunction>();
[8323]58    }
59
[8366]60    public override IDeepCloneable Clone(Cloner cloner) {
61      return new CovarianceSum(this, cloner);
62    }
63
64    public int GetNumberOfParameters(int numberOfVariables) {
65      this.numberOfVariables = numberOfVariables;
66      return terms.Select(t => t.GetNumberOfParameters(numberOfVariables)).Sum();
67    }
68
[8982]69    public void SetParameter(double[] p) {
[8366]70      int offset = 0;
71      foreach (var t in terms) {
[8416]72        var numberOfParameters = t.GetNumberOfParameters(numberOfVariables);
[8982]73        t.SetParameter(p.Skip(offset).Take(numberOfParameters).ToArray());
[8416]74        offset += numberOfParameters;
[8323]75      }
76    }
[8484]77
[8982]78    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
79      if (terms.Count == 0) throw new ArgumentException("at least one term is necessary for the product covariance function.");
80      var functions = new List<ParameterizedCovarianceFunction>();
81      foreach (var t in terms) {
82        var numberOfParameters = t.GetNumberOfParameters(numberOfVariables);
83        functions.Add(t.GetParameterizedCovarianceFunction(p.Take(numberOfParameters).ToArray(), columnIndices));
84        p = p.Skip(numberOfParameters).ToArray();
85      }
[8323]86
[8982]87      var sum = new ParameterizedCovarianceFunction();
88      sum.Covariance = (x, i, j) => functions.Select(e => e.Covariance(x, i, j)).Sum();
89      sum.CrossCovariance = (x, xt, i, j) => functions.Select(e => e.CrossCovariance(x, xt, i, j)).Sum();
90      sum.CovarianceGradient = (x, i, j) => functions.Select(e => e.CovarianceGradient(x, i, j)).Aggregate(Enumerable.Concat);
91      return sum;
[8366]92    }
[8323]93  }
94}
Note: See TracBrowser for help on using the repository browser.