[10205] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[12012] | 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[10205] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item(Name = "CovarianceSpectralMixture",
|
---|
| 34 | Description = "The spectral mixture kernel described in Wilson A. G. and Adams R.P., Gaussian Process Kernels for Pattern Discovery and Exptrapolation, ICML 2013.")]
|
---|
| 35 | public sealed class CovarianceSpectralMixture : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 36 | public const string QParameterName = "Number of components (Q)";
|
---|
| 37 | public const string WeightParameterName = "Weight";
|
---|
| 38 | public const string FrequencyParameterName = "Component frequency (mu)";
|
---|
| 39 | public const string LengthScaleParameterName = "Length scale (nu)";
|
---|
| 40 | public IValueParameter<IntValue> QParameter {
|
---|
| 41 | get { return (IValueParameter<IntValue>)Parameters[QParameterName]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public IValueParameter<DoubleArray> WeightParameter {
|
---|
| 45 | get { return (IValueParameter<DoubleArray>)Parameters[WeightParameterName]; }
|
---|
| 46 | }
|
---|
| 47 | public IValueParameter<DoubleArray> FrequencyParameter {
|
---|
| 48 | get { return (IValueParameter<DoubleArray>)Parameters[FrequencyParameterName]; }
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | public IValueParameter<DoubleArray> LengthScaleParameter {
|
---|
| 52 | get { return (IValueParameter<DoubleArray>)Parameters[LengthScaleParameterName]; }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
[10489] | 55 | private bool HasFixedWeightParameter {
|
---|
| 56 | get { return WeightParameter.Value != null; }
|
---|
| 57 | }
|
---|
| 58 | private bool HasFixedFrequencyParameter {
|
---|
| 59 | get { return FrequencyParameter.Value != null; }
|
---|
| 60 | }
|
---|
| 61 | private bool HasFixedLengthScaleParameter {
|
---|
| 62 | get { return LengthScaleParameter.Value != null; }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
[10205] | 65 | [StorableConstructor]
|
---|
| 66 | private CovarianceSpectralMixture(bool deserializing)
|
---|
| 67 | : base(deserializing) {
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | private CovarianceSpectralMixture(CovarianceSpectralMixture original, Cloner cloner)
|
---|
| 71 | : base(original, cloner) {
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | public CovarianceSpectralMixture()
|
---|
| 75 | : base() {
|
---|
| 76 | Name = ItemName;
|
---|
| 77 | Description = ItemDescription;
|
---|
| 78 | Parameters.Add(new ValueParameter<IntValue>(QParameterName, "The number of Gaussians (Q) to use for the spectral mixture.", new IntValue(10)));
|
---|
| 79 | Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightParameterName, "The weight of the component w (peak height of the Gaussian in spectrum)."));
|
---|
| 80 | Parameters.Add(new OptionalValueParameter<DoubleArray>(FrequencyParameterName, "The inverse component period parameter mu_q (location of the Gaussian in spectrum)."));
|
---|
| 81 | Parameters.Add(new OptionalValueParameter<DoubleArray>(LengthScaleParameterName, "The length scale parameter (nu_q) (variance of the Gaussian in the spectrum)."));
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 85 | return new CovarianceSpectralMixture(this, cloner);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 89 | var q = QParameter.Value.Value;
|
---|
| 90 | return
|
---|
[10489] | 91 | (HasFixedWeightParameter ? 0 : q) +
|
---|
| 92 | (HasFixedFrequencyParameter ? 0 : q * numberOfVariables) +
|
---|
| 93 | (HasFixedLengthScaleParameter ? 0 : q * numberOfVariables);
|
---|
[10205] | 94 | }
|
---|
| 95 |
|
---|
| 96 | public void SetParameter(double[] p) {
|
---|
| 97 | double[] weight, frequency, lengthScale;
|
---|
| 98 | GetParameterValues(p, out weight, out frequency, out lengthScale);
|
---|
| 99 | WeightParameter.Value = new DoubleArray(weight);
|
---|
| 100 | FrequencyParameter.Value = new DoubleArray(frequency);
|
---|
| 101 | LengthScaleParameter.Value = new DoubleArray(lengthScale);
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 |
|
---|
| 105 | private void GetParameterValues(double[] p, out double[] weight, out double[] frequency, out double[] lengthScale) {
|
---|
| 106 | // gather parameter values
|
---|
| 107 | int c = 0;
|
---|
| 108 | int q = QParameter.Value.Value;
|
---|
| 109 | // guess number of elements for frequency and length (=q * numberOfVariables)
|
---|
| 110 | int n = WeightParameter.Value == null ? ((p.Length - q) / 2) : (p.Length / 2);
|
---|
[10489] | 111 | if (HasFixedWeightParameter) {
|
---|
[10205] | 112 | weight = WeightParameter.Value.ToArray();
|
---|
| 113 | } else {
|
---|
| 114 | weight = p.Skip(c).Select(Math.Exp).Take(q).ToArray();
|
---|
| 115 | c += q;
|
---|
| 116 | }
|
---|
[10489] | 117 | if (HasFixedFrequencyParameter) {
|
---|
[10205] | 118 | frequency = FrequencyParameter.Value.ToArray();
|
---|
| 119 | } else {
|
---|
| 120 | frequency = p.Skip(c).Select(Math.Exp).Take(n).ToArray();
|
---|
| 121 | c += n;
|
---|
| 122 | }
|
---|
[10489] | 123 | if (HasFixedLengthScaleParameter) {
|
---|
[10205] | 124 | lengthScale = LengthScaleParameter.Value.ToArray();
|
---|
| 125 | } else {
|
---|
| 126 | lengthScale = p.Skip(c).Select(Math.Exp).Take(n).ToArray();
|
---|
| 127 | c += n;
|
---|
| 128 | }
|
---|
| 129 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSpectralMixture", "p");
|
---|
| 130 | }
|
---|
| 131 |
|
---|
[13721] | 132 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
[10205] | 133 | double[] weight, frequency, lengthScale;
|
---|
| 134 | GetParameterValues(p, out weight, out frequency, out lengthScale);
|
---|
[10489] | 135 | var fixedWeight = HasFixedWeightParameter;
|
---|
| 136 | var fixedFrequency = HasFixedFrequencyParameter;
|
---|
| 137 | var fixedLengthScale = HasFixedLengthScaleParameter;
|
---|
[10205] | 138 | // create functions
|
---|
| 139 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 140 | cov.Covariance = (x, i, j) => {
|
---|
| 141 | return GetCovariance(x, x, i, j, QParameter.Value.Value, weight, frequency,
|
---|
| 142 | lengthScale, columnIndices);
|
---|
| 143 | };
|
---|
| 144 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
| 145 | return GetCovariance(x, xt, i, j, QParameter.Value.Value, weight, frequency,
|
---|
| 146 | lengthScale, columnIndices);
|
---|
| 147 | };
|
---|
| 148 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, QParameter.Value.Value, weight, frequency,
|
---|
[10489] | 149 | lengthScale, columnIndices, fixedWeight, fixedFrequency, fixedLengthScale);
|
---|
[10205] | 150 | return cov;
|
---|
| 151 | }
|
---|
| 152 |
|
---|
[13721] | 153 | private static double GetCovariance(double[,] x, double[,] xt, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices) {
|
---|
[10205] | 154 | // tau = x - x' (only for selected variables)
|
---|
| 155 | double[] tau =
|
---|
| 156 | Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(xt, j, columnIndices), (xi, xj) => xi - xj).ToArray();
|
---|
| 157 | int numberOfVariables = lengthScale.Length / maxQ;
|
---|
| 158 | double k = 0;
|
---|
| 159 | // for each component
|
---|
| 160 | for (int q = 0; q < maxQ; q++) {
|
---|
| 161 | double kc = weight[q]; // weighted kernel component
|
---|
| 162 |
|
---|
| 163 | int idx = 0; // helper index for tau
|
---|
| 164 | // for each selected variable
|
---|
[13721] | 165 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 166 | var col = columnIndices[c];
|
---|
| 167 | kc *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]);
|
---|
[10205] | 168 | idx++;
|
---|
| 169 | }
|
---|
| 170 | k += kc;
|
---|
| 171 | }
|
---|
| 172 | return k;
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | public static double f1(double tau, double lengthScale) {
|
---|
| 176 | return Math.Exp(-2 * Math.PI * Math.PI * tau * tau * lengthScale);
|
---|
| 177 | }
|
---|
| 178 | public static double f2(double tau, double frequency) {
|
---|
| 179 | return Math.Cos(2 * Math.PI * tau * frequency);
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | // order of returned gradients must match the order in GetParameterValues!
|
---|
[13721] | 183 | private static IEnumerable<double> GetGradient(double[,] x, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices,
|
---|
[10489] | 184 | bool fixedWeight, bool fixedFrequency, bool fixedLengthScale) {
|
---|
[10205] | 185 | double[] tau = Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(x, j, columnIndices), (xi, xj) => xi - xj).ToArray();
|
---|
| 186 | int numberOfVariables = lengthScale.Length / maxQ;
|
---|
| 187 |
|
---|
[10489] | 188 | if (!fixedWeight) {
|
---|
| 189 | // weight
|
---|
| 190 | // for each component
|
---|
| 191 | for (int q = 0; q < maxQ; q++) {
|
---|
| 192 | double k = weight[q];
|
---|
| 193 | int idx = 0; // helper index for tau
|
---|
| 194 | // for each selected variable
|
---|
[13721] | 195 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 196 | var col = columnIndices[c];
|
---|
| 197 | k *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]);
|
---|
[10489] | 198 | idx++;
|
---|
| 199 | }
|
---|
| 200 | yield return k;
|
---|
[10205] | 201 | }
|
---|
| 202 | }
|
---|
| 203 |
|
---|
[10489] | 204 | if (!fixedFrequency) {
|
---|
| 205 | // frequency
|
---|
| 206 | // for each component
|
---|
| 207 | for (int q = 0; q < maxQ; q++) {
|
---|
| 208 | int idx = 0; // helper index for tau
|
---|
| 209 | // for each selected variable
|
---|
| 210 | foreach (var c in columnIndices) {
|
---|
| 211 | double k = f1(tau[idx], lengthScale[q * numberOfVariables + c]) *
|
---|
| 212 | -2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c] *
|
---|
| 213 | Math.Sin(2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c]);
|
---|
| 214 | idx++;
|
---|
| 215 | yield return weight[q] * k;
|
---|
| 216 | }
|
---|
[10205] | 217 | }
|
---|
| 218 | }
|
---|
| 219 |
|
---|
[10489] | 220 | if (!fixedLengthScale) {
|
---|
| 221 | // length scale
|
---|
| 222 | // for each component
|
---|
| 223 | for (int q = 0; q < maxQ; q++) {
|
---|
| 224 | int idx = 0; // helper index for tau
|
---|
| 225 | // for each selected variable
|
---|
| 226 | foreach (var c in columnIndices) {
|
---|
| 227 | double k = -2 * Math.PI * Math.PI * tau[idx] * tau[idx] * lengthScale[q * numberOfVariables + c] *
|
---|
| 228 | f1(tau[idx], lengthScale[q * numberOfVariables + c]) *
|
---|
| 229 | f2(tau[idx], frequency[q * numberOfVariables + c]);
|
---|
| 230 | idx++;
|
---|
| 231 | yield return weight[q] * k;
|
---|
| 232 | }
|
---|
[10205] | 233 | }
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 | }
|
---|
| 237 | }
|
---|