Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceRationalQuadraticIso.cs @ 8982

Last change on this file since 8982 was 8982, checked in by gkronber, 12 years ago

#1902: removed class HyperParameter and changed implementations of covariance and mean functions to remove the parameter value caching and event handlers for parameter caching. Instead it is now possible to create the actual covariance and mean functions as Func from templates and specified parameter values. The instances of mean and covariance functions configured in the GUI are actually templates where the structure and fixed parameters can be specified.

File size: 5.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29
30namespace HeuristicLab.Algorithms.DataAnalysis {
31  [StorableClass]
32  [Item(Name = "CovarianceRationalQuadraticIso",
33    Description = "Isotropic rational quadratic covariance function for Gaussian processes.")]
34  public sealed class CovarianceRationalQuadraticIso : ParameterizedNamedItem, ICovarianceFunction {
35    public IValueParameter<DoubleValue> ScaleParameter {
36      get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
37    }
38
39    public IValueParameter<DoubleValue> InverseLengthParameter {
40      get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
41    }
42
43    public IValueParameter<DoubleValue> ShapeParameter {
44      get { return (IValueParameter<DoubleValue>)Parameters["Shape"]; }
45    }
46    [StorableConstructor]
47    private CovarianceRationalQuadraticIso(bool deserializing)
48      : base(deserializing) {
49    }
50
51    private CovarianceRationalQuadraticIso(CovarianceRationalQuadraticIso original, Cloner cloner)
52      : base(original, cloner) {
53    }
54
55    public CovarianceRationalQuadraticIso()
56      : base() {
57      Name = ItemName;
58      Description = ItemDescription;
59
60      Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the isometric rational quadratic covariance function."));
61      Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric rational quadratic covariance function."));
62      Parameters.Add(new OptionalValueParameter<DoubleValue>("Shape", "The shape parameter (alpha) of the isometric rational quadratic covariance function."));
63    }
64
65    public override IDeepCloneable Clone(Cloner cloner) {
66      return new CovarianceRationalQuadraticIso(this, cloner);
67    }
68
69    public int GetNumberOfParameters(int numberOfVariables) {
70      return (ScaleParameter.Value != null ? 0 : 1) +
71        (ShapeParameter.Value != null ? 0 : 1) +
72        (InverseLengthParameter.Value != null ? 0 : 1);
73    }
74
75    public void SetParameter(double[] p) {
76      double scale, shape, inverseLength;
77      GetParameterValues(p, out scale, out shape, out inverseLength);
78      ScaleParameter.Value = new DoubleValue(scale);
79      ShapeParameter.Value = new DoubleValue(shape);
80      InverseLengthParameter.Value = new DoubleValue(inverseLength);
81    }
82
83    private void GetParameterValues(double[] p, out double scale, out double shape, out double inverseLength) {
84      int c = 0;
85      // gather parameter values
86      if (ScaleParameter.Value != null) {
87        scale = ScaleParameter.Value.Value;
88      } else {
89        scale = Math.Exp(2 * p[c]);
90        c++;
91      }
92      if (ShapeParameter.Value != null) {
93        shape = ShapeParameter.Value.Value;
94      } else {
95        shape = Math.Exp(p[c]);
96        c++;
97      }
98      if (InverseLengthParameter.Value != null) {
99        inverseLength = InverseLengthParameter.Value.Value;
100      } else {
101        inverseLength = 1.0 / Math.Exp(p[c]);
102        c++;
103      }
104      if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticIso", "p");
105    }
106
107    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
108      double scale, shape, inverseLength;
109      GetParameterValues(p, out scale, out shape, out inverseLength);
110      // create functions
111      var cov = new ParameterizedCovarianceFunction();
112      cov.Covariance = (x, i, j) => {
113        double d = i == j
114                    ? 0.0
115                    : Util.SqrDist(x, i, j, inverseLength, columnIndices);
116        return shape * Math.Pow(1 + 0.5 * d / shape, -shape);
117      };
118      cov.CrossCovariance = (x, xt, i, j) => {
119        double d = Util.SqrDist(x, i, xt, j, inverseLength, columnIndices);
120        return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
121      };
122      cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, shape, inverseLength);
123      return cov;
124    }
125
126    private static IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices, double scale, double shape, double inverseLength) {
127      double d = i == j
128                   ? 0.0
129                   : Util.SqrDist(x, i, j, inverseLength, columnIndices);
130
131      double b = 1 + 0.5 * d / shape;
132      yield return scale * Math.Pow(b, -shape - 1) * d;
133      yield return 2 * scale * Math.Pow(b, -shape);
134      yield return scale * Math.Pow(b, -shape) * (0.5 * d / b - shape * Math.Log(b));
135    }
136  }
137}
Note: See TracBrowser for help on using the repository browser.