1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | [Item(Name = "CovarianceRationalQuadraticArd",
|
---|
33 | Description = "Rational quadratic covariance function with automatic relevance determination for Gaussian processes.")]
|
---|
34 | public sealed class CovarianceRationalQuadraticArd : ParameterizedNamedItem, ICovarianceFunction {
|
---|
35 | [Storable]
|
---|
36 | private double sf2;
|
---|
37 | [Storable]
|
---|
38 | private readonly HyperParameter<DoubleValue> scaleParameter;
|
---|
39 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
40 | get { return scaleParameter; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | [Storable]
|
---|
44 | private double[] inverseLength;
|
---|
45 | [Storable]
|
---|
46 | private readonly HyperParameter<DoubleArray> inverseLengthParameter;
|
---|
47 | public IValueParameter<DoubleArray> InverseLengthParameter {
|
---|
48 | get { return inverseLengthParameter; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | [Storable]
|
---|
52 | private double shape;
|
---|
53 | [Storable]
|
---|
54 | private readonly HyperParameter<DoubleValue> shapeParameter;
|
---|
55 | public IValueParameter<DoubleValue> ShapeParameter {
|
---|
56 | get { return shapeParameter; }
|
---|
57 | }
|
---|
58 |
|
---|
59 | [StorableConstructor]
|
---|
60 | private CovarianceRationalQuadraticArd(bool deserializing)
|
---|
61 | : base(deserializing) {
|
---|
62 | }
|
---|
63 |
|
---|
64 | private CovarianceRationalQuadraticArd(CovarianceRationalQuadraticArd original, Cloner cloner)
|
---|
65 | : base(original, cloner) {
|
---|
66 | this.scaleParameter = cloner.Clone(original.scaleParameter);
|
---|
67 | this.sf2 = original.sf2;
|
---|
68 |
|
---|
69 | this.inverseLengthParameter = cloner.Clone(original.inverseLengthParameter);
|
---|
70 | if (original.inverseLength != null) {
|
---|
71 | this.inverseLength = new double[original.inverseLength.Length];
|
---|
72 | Array.Copy(original.inverseLength, inverseLength, inverseLength.Length);
|
---|
73 | }
|
---|
74 |
|
---|
75 | this.shapeParameter = cloner.Clone(original.shapeParameter);
|
---|
76 | this.shape = original.shape;
|
---|
77 |
|
---|
78 | RegisterEvents();
|
---|
79 | }
|
---|
80 |
|
---|
81 | public CovarianceRationalQuadraticArd()
|
---|
82 | : base() {
|
---|
83 | Name = ItemName;
|
---|
84 | Description = ItemDescription;
|
---|
85 |
|
---|
86 | this.scaleParameter = new HyperParameter<DoubleValue>("Scale", "The scale parameter of the rational quadratic covariance function with ARD.");
|
---|
87 | this.inverseLengthParameter = new HyperParameter<DoubleArray>("InverseLength", "The inverse length parameter for automatic relevance determination.");
|
---|
88 | this.shapeParameter = new HyperParameter<DoubleValue>("Shape", "The shape parameter (alpha) of the rational quadratic covariance function with ARD.");
|
---|
89 |
|
---|
90 | Parameters.Add(scaleParameter);
|
---|
91 | Parameters.Add(inverseLengthParameter);
|
---|
92 | Parameters.Add(shapeParameter);
|
---|
93 |
|
---|
94 | RegisterEvents();
|
---|
95 | }
|
---|
96 |
|
---|
97 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
98 | return new CovarianceRationalQuadraticArd(this, cloner);
|
---|
99 | }
|
---|
100 |
|
---|
101 | [StorableHook(HookType.AfterDeserialization)]
|
---|
102 | private void AfterDeserialization() {
|
---|
103 | RegisterEvents();
|
---|
104 | }
|
---|
105 |
|
---|
106 | private void RegisterEvents() {
|
---|
107 | Util.AttachValueChangeHandler<DoubleValue, double>(scaleParameter, () => { sf2 = scaleParameter.Value.Value; });
|
---|
108 | Util.AttachValueChangeHandler<DoubleValue, double>(shapeParameter, () => { shape = shapeParameter.Value.Value; });
|
---|
109 | Util.AttachArrayChangeHandler<DoubleArray, double>(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.ToArray(); });
|
---|
110 | }
|
---|
111 |
|
---|
112 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
113 | return
|
---|
114 | (scaleParameter.Fixed ? 0 : 1) +
|
---|
115 | (shapeParameter.Fixed ? 0 : 1) +
|
---|
116 | (inverseLengthParameter.Fixed ? 0 : numberOfVariables);
|
---|
117 | }
|
---|
118 |
|
---|
119 | public void SetParameter(double[] hyp) {
|
---|
120 | int i = 0;
|
---|
121 | if (!scaleParameter.Fixed) {
|
---|
122 | scaleParameter.SetValue(new DoubleValue(Math.Exp(2 * hyp[i])));
|
---|
123 | i++;
|
---|
124 | }
|
---|
125 | if (!shapeParameter.Fixed) {
|
---|
126 | shapeParameter.SetValue(new DoubleValue(Math.Exp(hyp[i])));
|
---|
127 | i++;
|
---|
128 | }
|
---|
129 | if (!inverseLengthParameter.Fixed) {
|
---|
130 | inverseLengthParameter.SetValue(new DoubleArray(hyp.Skip(i).Select(e => 1.0 / Math.Exp(e)).ToArray()));
|
---|
131 | i += hyp.Skip(i).Count();
|
---|
132 | }
|
---|
133 | if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticArd", "hyp");
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | public double GetCovariance(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
138 | double d = i == j
|
---|
139 | ? 0.0
|
---|
140 | : Util.SqrDist(x, i, j, inverseLength, columnIndices);
|
---|
141 | return sf2 * Math.Pow(1 + 0.5 * d / shape, -shape);
|
---|
142 | }
|
---|
143 |
|
---|
144 | public IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
145 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
146 | double d = i == j
|
---|
147 | ? 0.0
|
---|
148 | : Util.SqrDist(x, i, j, inverseLength, columnIndices);
|
---|
149 | double b = 1 + 0.5 * d / shape;
|
---|
150 | int k = 0;
|
---|
151 | foreach (var columnIndex in columnIndices) {
|
---|
152 | yield return sf2 * Math.Pow(b, -shape - 1) * Util.SqrDist(x[i, columnIndex] * inverseLength[k], x[j, columnIndex] * inverseLength[k]);
|
---|
153 | k++;
|
---|
154 | }
|
---|
155 | yield return 2 * sf2 * Math.Pow(b, -shape);
|
---|
156 | yield return sf2 * Math.Pow(b, -shape) * (0.5 * d / b - shape * Math.Log(b));
|
---|
157 | }
|
---|
158 |
|
---|
159 | public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j, IEnumerable<int> columnIndices) {
|
---|
160 | double d = Util.SqrDist(x, i, xt, j, inverseLength, columnIndices);
|
---|
161 | return sf2 * Math.Pow(1 + 0.5 * d / shape, -shape);
|
---|
162 | }
|
---|
163 | }
|
---|
164 | }
|
---|