[8565] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8612] | 27 | using HeuristicLab.Data;
|
---|
[8982] | 28 | using HeuristicLab.Parameters;
|
---|
[8565] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [StorableClass]
|
---|
[8615] | 33 | [Item(Name = "CovarianceRationalQuadraticArd",
|
---|
[8565] | 34 | Description = "Rational quadratic covariance function with automatic relevance determination for Gaussian processes.")]
|
---|
[8615] | 35 | public sealed class CovarianceRationalQuadraticArd : ParameterizedNamedItem, ICovarianceFunction {
|
---|
[8612] | 36 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
[8982] | 37 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
[8612] | 38 | }
|
---|
| 39 |
|
---|
| 40 | public IValueParameter<DoubleArray> InverseLengthParameter {
|
---|
[8982] | 41 | get { return (IValueParameter<DoubleArray>)Parameters["InverseLength"]; }
|
---|
[8565] | 42 | }
|
---|
[8612] | 43 |
|
---|
| 44 | public IValueParameter<DoubleValue> ShapeParameter {
|
---|
[8982] | 45 | get { return (IValueParameter<DoubleValue>)Parameters["Shape"]; }
|
---|
[8612] | 46 | }
|
---|
[8565] | 47 |
|
---|
| 48 | [StorableConstructor]
|
---|
[8615] | 49 | private CovarianceRationalQuadraticArd(bool deserializing)
|
---|
[8565] | 50 | : base(deserializing) {
|
---|
| 51 | }
|
---|
| 52 |
|
---|
[8615] | 53 | private CovarianceRationalQuadraticArd(CovarianceRationalQuadraticArd original, Cloner cloner)
|
---|
[8565] | 54 | : base(original, cloner) {
|
---|
| 55 | }
|
---|
| 56 |
|
---|
[8615] | 57 | public CovarianceRationalQuadraticArd()
|
---|
[8565] | 58 | : base() {
|
---|
[8612] | 59 | Name = ItemName;
|
---|
| 60 | Description = ItemDescription;
|
---|
| 61 |
|
---|
[8982] | 62 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the rational quadratic covariance function with ARD."));
|
---|
| 63 | Parameters.Add(new OptionalValueParameter<DoubleArray>("InverseLength", "The inverse length parameter for automatic relevance determination."));
|
---|
| 64 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Shape", "The shape parameter (alpha) of the rational quadratic covariance function with ARD."));
|
---|
[8565] | 65 | }
|
---|
| 66 |
|
---|
| 67 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[8615] | 68 | return new CovarianceRationalQuadraticArd(this, cloner);
|
---|
[8565] | 69 | }
|
---|
| 70 |
|
---|
[8982] | 71 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 72 | return
|
---|
| 73 | (ScaleParameter.Value != null ? 0 : 1) +
|
---|
| 74 | (ShapeParameter.Value != null ? 0 : 1) +
|
---|
| 75 | (InverseLengthParameter.Value != null ? 0 : numberOfVariables);
|
---|
[8612] | 76 | }
|
---|
| 77 |
|
---|
[8982] | 78 | public void SetParameter(double[] p) {
|
---|
| 79 | double scale, shape;
|
---|
| 80 | double[] inverseLength;
|
---|
| 81 | GetParameterValues(p, out scale, out shape, out inverseLength);
|
---|
| 82 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
| 83 | ShapeParameter.Value = new DoubleValue(shape);
|
---|
| 84 | InverseLengthParameter.Value = new DoubleArray(inverseLength);
|
---|
[8612] | 85 | }
|
---|
| 86 |
|
---|
[8982] | 87 | private void GetParameterValues(double[] p, out double scale, out double shape, out double[] inverseLength) {
|
---|
| 88 | int c = 0;
|
---|
| 89 | // gather parameter values
|
---|
[9108] | 90 | if (InverseLengthParameter.Value != null) {
|
---|
| 91 | inverseLength = InverseLengthParameter.Value.ToArray();
|
---|
| 92 | } else {
|
---|
| 93 | int length = p.Length;
|
---|
| 94 | if (ScaleParameter.Value == null) length--;
|
---|
| 95 | if (ShapeParameter.Value == null) length--;
|
---|
| 96 | inverseLength = p.Select(e => 1.0 / Math.Exp(e)).Take(length).ToArray();
|
---|
| 97 | c += inverseLength.Length;
|
---|
| 98 | }
|
---|
[8982] | 99 | if (ScaleParameter.Value != null) {
|
---|
| 100 | scale = ScaleParameter.Value.Value;
|
---|
| 101 | } else {
|
---|
| 102 | scale = Math.Exp(2 * p[c]);
|
---|
| 103 | c++;
|
---|
[8612] | 104 | }
|
---|
[8982] | 105 | if (ShapeParameter.Value != null) {
|
---|
| 106 | shape = ShapeParameter.Value.Value;
|
---|
| 107 | } else {
|
---|
| 108 | shape = Math.Exp(p[c]);
|
---|
| 109 | c++;
|
---|
[8612] | 110 | }
|
---|
[8982] | 111 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceRationalQuadraticArd", "p");
|
---|
[8565] | 112 | }
|
---|
| 113 |
|
---|
[8982] | 114 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 115 | double scale, shape;
|
---|
| 116 | double[] inverseLength;
|
---|
| 117 | GetParameterValues(p, out scale, out shape, out inverseLength);
|
---|
| 118 | // create functions
|
---|
| 119 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 120 | cov.Covariance = (x, i, j) => {
|
---|
| 121 | double d = i == j
|
---|
| 122 | ? 0.0
|
---|
| 123 | : Util.SqrDist(x, i, j, inverseLength, columnIndices);
|
---|
| 124 | return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
|
---|
| 125 | };
|
---|
| 126 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
| 127 | double d = Util.SqrDist(x, i, xt, j, inverseLength, columnIndices);
|
---|
| 128 | return scale * Math.Pow(1 + 0.5 * d / shape, -shape);
|
---|
| 129 | };
|
---|
| 130 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, shape, inverseLength);
|
---|
| 131 | return cov;
|
---|
[8565] | 132 | }
|
---|
| 133 |
|
---|
[8982] | 134 | private static IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices, double scale, double shape, double[] inverseLength) {
|
---|
[8565] | 135 | double d = i == j
|
---|
| 136 | ? 0.0
|
---|
[8678] | 137 | : Util.SqrDist(x, i, j, inverseLength, columnIndices);
|
---|
[8612] | 138 | double b = 1 + 0.5 * d / shape;
|
---|
[8933] | 139 | int k = 0;
|
---|
[8932] | 140 | foreach (var columnIndex in columnIndices) {
|
---|
[8982] | 141 | yield return scale * Math.Pow(b, -shape - 1) * Util.SqrDist(x[i, columnIndex] * inverseLength[k], x[j, columnIndex] * inverseLength[k]);
|
---|
[8933] | 142 | k++;
|
---|
[8565] | 143 | }
|
---|
[8982] | 144 | yield return 2 * scale * Math.Pow(b, -shape);
|
---|
| 145 | yield return scale * Math.Pow(b, -shape) * (0.5 * d / b - shape * Math.Log(b));
|
---|
[8565] | 146 | }
|
---|
| 147 | }
|
---|
| 148 | }
|
---|