Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovariancePolynomial.cs @ 11128

Last change on this file since 11128 was 10489, checked in by gkronber, 11 years ago

#2125 fixed the bug that covariance functions returned the full gradient vector even when parameters are partially fixed.
changed the calculation of NN covariance and gradient to direct calculation (instead of AutoDiff)

File size: 5.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Algorithms.DataAnalysis {
32  [StorableClass]
33  [Item(Name = "CovariancePolynomial",
34    Description = "Polynomial covariance function for Gaussian processes.")]
35  public sealed class CovariancePolynomial : ParameterizedNamedItem, ICovarianceFunction {
36    public IValueParameter<DoubleValue> ConstParameter {
37      get { return (IValueParameter<DoubleValue>)Parameters["Const"]; }
38    }
39
40    public IValueParameter<DoubleValue> ScaleParameter {
41      get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
42    }
43
44    public IValueParameter<IntValue> DegreeParameter {
45      get { return (IValueParameter<IntValue>)Parameters["Degree"]; }
46    }
47    private bool HasFixedConstParameter {
48      get { return ConstParameter.Value != null; }
49    }
50    private bool HasFixedScaleParameter {
51      get { return ScaleParameter.Value != null; }
52    }
53
54    [StorableConstructor]
55    private CovariancePolynomial(bool deserializing)
56      : base(deserializing) {
57    }
58
59    private CovariancePolynomial(CovariancePolynomial original, Cloner cloner)
60      : base(original, cloner) {
61    }
62
63    public CovariancePolynomial()
64      : base() {
65      Name = ItemName;
66      Description = ItemDescription;
67
68      Parameters.Add(new OptionalValueParameter<DoubleValue>("Const", "Additive constant in the polymomial."));
69      Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the polynomial covariance function."));
70      Parameters.Add(new ValueParameter<IntValue>("Degree", "The degree of the polynomial (only non-zero positive values allowed).", new IntValue(2)));
71    }
72
73    public override IDeepCloneable Clone(Cloner cloner) {
74      return new CovariancePolynomial(this, cloner);
75    }
76
77    public int GetNumberOfParameters(int numberOfVariables) {
78      return
79        (HasFixedConstParameter ? 0 : 1) +
80        (HasFixedScaleParameter ? 0 : 1);
81    }
82
83    public void SetParameter(double[] p) {
84      double @const, scale;
85      GetParameterValues(p, out @const, out scale);
86      ConstParameter.Value = new DoubleValue(@const);
87      ScaleParameter.Value = new DoubleValue(scale);
88    }
89
90    private void GetParameterValues(double[] p, out double @const, out double scale) {
91      // gather parameter values
92      int n = 0;
93      if (HasFixedConstParameter) {
94        @const = ConstParameter.Value.Value;
95      } else {
96        @const = Math.Exp(p[n]);
97        n++;
98      }
99
100      if (HasFixedScaleParameter) {
101        scale = ScaleParameter.Value.Value;
102      } else {
103        scale = Math.Exp(2 * p[n]);
104        n++;
105      }
106      if (p.Length != n) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovariancePolynomial", "p");
107    }
108
109    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
110      double @const, scale;
111      int degree = DegreeParameter.Value.Value;
112      if (degree <= 0) throw new ArgumentException("The degree parameter for CovariancePolynomial must be greater than zero.");
113      GetParameterValues(p, out @const, out scale);
114      var fixedConst = HasFixedConstParameter;
115      var fixedScale = HasFixedScaleParameter;
116      // create functions
117      var cov = new ParameterizedCovarianceFunction();
118      cov.Covariance = (x, i, j) => scale * Math.Pow(@const + Util.ScalarProd(x, i, j, 1.0, columnIndices), degree);
119      cov.CrossCovariance = (x, xt, i, j) => scale * Math.Pow(@const + Util.ScalarProd(x, i, xt, j, 1.0, columnIndices), degree);
120      cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, @const, scale, degree, columnIndices, fixedConst, fixedScale);
121      return cov;
122    }
123
124    private static IEnumerable<double> GetGradient(double[,] x, int i, int j, double c, double scale, int degree, IEnumerable<int> columnIndices,
125      bool fixedConst, bool fixedScale) {
126      double s = Util.ScalarProd(x, i, j, 1.0, columnIndices);
127      if (!fixedConst) yield return c * degree * scale * Math.Pow(c + s, degree - 1);
128      if (!fixedScale) yield return 2 * scale * Math.Pow(c + s, degree);
129    }
130  }
131}
Note: See TracBrowser for help on using the repository browser.