1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | [Item(Name = "CovariancePeriodic", Description = "Periodic covariance function for Gaussian processes.")]
|
---|
33 | public sealed class CovariancePeriodic : ParameterizedNamedItem, ICovarianceFunction {
|
---|
34 |
|
---|
35 | [Storable]
|
---|
36 | private double scale;
|
---|
37 | [Storable]
|
---|
38 | private readonly HyperParameter<DoubleValue> scaleParameter;
|
---|
39 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
40 | get { return scaleParameter; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | [Storable]
|
---|
44 | private double inverseLength;
|
---|
45 | [Storable]
|
---|
46 | private readonly HyperParameter<DoubleValue> inverseLengthParameter;
|
---|
47 | public IValueParameter<DoubleValue> InverseLengthParameter {
|
---|
48 | get { return inverseLengthParameter; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | [Storable]
|
---|
52 | private double period;
|
---|
53 | [Storable]
|
---|
54 | private readonly HyperParameter<DoubleValue> periodParameter;
|
---|
55 | public IValueParameter<DoubleValue> PeriodParameter {
|
---|
56 | get { return periodParameter; }
|
---|
57 | }
|
---|
58 |
|
---|
59 |
|
---|
60 | [StorableConstructor]
|
---|
61 | private CovariancePeriodic(bool deserializing) : base(deserializing) { }
|
---|
62 | private CovariancePeriodic(CovariancePeriodic original, Cloner cloner)
|
---|
63 | : base(original, cloner) {
|
---|
64 | this.scaleParameter = cloner.Clone(original.scaleParameter);
|
---|
65 | this.inverseLengthParameter = cloner.Clone(original.inverseLengthParameter);
|
---|
66 | this.periodParameter = cloner.Clone(original.periodParameter);
|
---|
67 | this.scale = original.scale;
|
---|
68 | this.inverseLength = original.inverseLength;
|
---|
69 | this.period = original.period;
|
---|
70 |
|
---|
71 | RegisterEvents();
|
---|
72 | }
|
---|
73 |
|
---|
74 | public CovariancePeriodic()
|
---|
75 | : base() {
|
---|
76 | Name = ItemName;
|
---|
77 | Description = ItemDescription;
|
---|
78 |
|
---|
79 | scaleParameter = new HyperParameter<DoubleValue>("Scale", "The scale of the periodic covariance function.");
|
---|
80 | inverseLengthParameter = new HyperParameter<DoubleValue>("InverseLength", "The inverse length parameter for the periodic covariance function.");
|
---|
81 | periodParameter = new HyperParameter<DoubleValue>("Period", "The period parameter for the periodic covariance function.");
|
---|
82 | Parameters.Add(scaleParameter);
|
---|
83 | Parameters.Add(inverseLengthParameter);
|
---|
84 | Parameters.Add(periodParameter);
|
---|
85 |
|
---|
86 | RegisterEvents();
|
---|
87 | }
|
---|
88 |
|
---|
89 | [StorableHook(HookType.AfterDeserialization)]
|
---|
90 | private void AfterDeserialization() {
|
---|
91 | RegisterEvents();
|
---|
92 | }
|
---|
93 |
|
---|
94 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
95 | return new CovariancePeriodic(this, cloner);
|
---|
96 | }
|
---|
97 |
|
---|
98 | // caching
|
---|
99 | private void RegisterEvents() {
|
---|
100 | Util.AttachValueChangeHandler<DoubleValue, double>(scaleParameter, () => { scale = scaleParameter.Value.Value; });
|
---|
101 | Util.AttachValueChangeHandler<DoubleValue, double>(inverseLengthParameter, () => { inverseLength = inverseLengthParameter.Value.Value; });
|
---|
102 | Util.AttachValueChangeHandler<DoubleValue, double>(periodParameter, () => { period = periodParameter.Value.Value; });
|
---|
103 | }
|
---|
104 |
|
---|
105 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
106 | return
|
---|
107 | (new[] { scaleParameter, inverseLengthParameter, periodParameter }).Count(p => !p.Fixed);
|
---|
108 | }
|
---|
109 |
|
---|
110 | public void SetParameter(double[] hyp) {
|
---|
111 | int i = 0;
|
---|
112 | if (!inverseLengthParameter.Fixed) {
|
---|
113 | inverseLengthParameter.SetValue(new DoubleValue(1.0 / Math.Exp(hyp[i])));
|
---|
114 | i++;
|
---|
115 | }
|
---|
116 | if (!periodParameter.Fixed) {
|
---|
117 | periodParameter.SetValue(new DoubleValue(Math.Exp(hyp[i])));
|
---|
118 | i++;
|
---|
119 | }
|
---|
120 | if (!scaleParameter.Fixed) {
|
---|
121 | scaleParameter.SetValue(new DoubleValue(Math.Exp(2 * hyp[i])));
|
---|
122 | i++;
|
---|
123 | }
|
---|
124 | if (hyp.Length != i) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovariancePeriod", "hyp");
|
---|
125 | }
|
---|
126 |
|
---|
127 | public double GetCovariance(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
128 | double k = i == j ? 0.0 : GetDistance(x, x, i, j, columnIndices);
|
---|
129 | k = Math.PI * k / period;
|
---|
130 | k = Math.Sin(k) * inverseLength;
|
---|
131 | k = k * k;
|
---|
132 |
|
---|
133 | return scale * Math.Exp(-2.0 * k);
|
---|
134 | }
|
---|
135 |
|
---|
136 | public IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices) {
|
---|
137 | double v = i == j ? 0.0 : Math.PI * GetDistance(x, x, i, j, columnIndices) / period;
|
---|
138 | double gradient = Math.Sin(v) * inverseLength;
|
---|
139 | gradient *= gradient;
|
---|
140 | yield return 4.0 * scale * Math.Exp(-2.0 * gradient) * gradient;
|
---|
141 | double r = Math.Sin(v) * inverseLength;
|
---|
142 | yield return 4.0 * scale * inverseLength * Math.Exp(-2 * r * r) * r * Math.Cos(v) * v;
|
---|
143 | yield return 2.0 * scale * Math.Exp(-2 * gradient);
|
---|
144 | }
|
---|
145 |
|
---|
146 | public double GetCrossCovariance(double[,] x, double[,] xt, int i, int j, IEnumerable<int> columnIndices) {
|
---|
147 | double k = GetDistance(x, xt, i, j, columnIndices);
|
---|
148 | k = Math.PI * k / period;
|
---|
149 | k = Math.Sin(k) * inverseLength;
|
---|
150 | k = k * k;
|
---|
151 |
|
---|
152 | return scale * Math.Exp(-2.0 * k);
|
---|
153 | }
|
---|
154 |
|
---|
155 | private double GetDistance(double[,] x, double[,] xt, int i, int j, IEnumerable<int> columnIndices) {
|
---|
156 | return Math.Sqrt(Util.SqrDist(x, i, xt, j, 1, columnIndices));
|
---|
157 | }
|
---|
158 | }
|
---|
159 | }
|
---|