[8417] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9456] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8417] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
[8323] | 21 |
|
---|
[8417] | 22 | using System;
|
---|
[8484] | 23 | using System.Collections.Generic;
|
---|
[8582] | 24 | using System.Linq;
|
---|
[8417] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8582] | 27 | using HeuristicLab.Data;
|
---|
[8982] | 28 | using HeuristicLab.Parameters;
|
---|
[8417] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item(Name = "CovariancePeriodic", Description = "Periodic covariance function for Gaussian processes.")]
|
---|
[8612] | 34 | public sealed class CovariancePeriodic : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 35 |
|
---|
[8582] | 36 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
[8982] | 37 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
[8582] | 38 | }
|
---|
[8612] | 39 |
|
---|
[8582] | 40 | public IValueParameter<DoubleValue> InverseLengthParameter {
|
---|
[8982] | 41 | get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
|
---|
[8582] | 42 | }
|
---|
[8612] | 43 |
|
---|
[8582] | 44 | public IValueParameter<DoubleValue> PeriodParameter {
|
---|
[8982] | 45 | get { return (IValueParameter<DoubleValue>)Parameters["Period"]; }
|
---|
[8582] | 46 | }
|
---|
| 47 |
|
---|
| 48 |
|
---|
[8417] | 49 | [StorableConstructor]
|
---|
[8612] | 50 | private CovariancePeriodic(bool deserializing) : base(deserializing) { }
|
---|
| 51 | private CovariancePeriodic(CovariancePeriodic original, Cloner cloner)
|
---|
[8417] | 52 | : base(original, cloner) {
|
---|
| 53 | }
|
---|
[8582] | 54 |
|
---|
[8417] | 55 | public CovariancePeriodic()
|
---|
| 56 | : base() {
|
---|
[8612] | 57 | Name = ItemName;
|
---|
| 58 | Description = ItemDescription;
|
---|
[8678] | 59 |
|
---|
[8982] | 60 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale of the periodic covariance function."));
|
---|
| 61 | Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter for the periodic covariance function."));
|
---|
| 62 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Period", "The period parameter for the periodic covariance function."));
|
---|
[8417] | 63 | }
|
---|
[8323] | 64 |
|
---|
[8417] | 65 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 66 | return new CovariancePeriodic(this, cloner);
|
---|
[8323] | 67 | }
|
---|
| 68 |
|
---|
[8982] | 69 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 70 | return (ScaleParameter.Value != null ? 0 : 1) +
|
---|
| 71 | (PeriodParameter.Value != null ? 0 : 1) +
|
---|
| 72 | (InverseLengthParameter.Value != null ? 0 : 1);
|
---|
[8323] | 73 | }
|
---|
| 74 |
|
---|
[8982] | 75 | public void SetParameter(double[] p) {
|
---|
| 76 | double scale, inverseLength, period;
|
---|
| 77 | GetParameterValues(p, out scale, out period, out inverseLength);
|
---|
| 78 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
| 79 | PeriodParameter.Value = new DoubleValue(period);
|
---|
| 80 | InverseLengthParameter.Value = new DoubleValue(inverseLength);
|
---|
[8582] | 81 | }
|
---|
| 82 |
|
---|
[8982] | 83 |
|
---|
[9108] | 84 | private void GetParameterValues(double[]
|
---|
| 85 | p, out double scale, out double period, out double inverseLength) {
|
---|
[8982] | 86 | // gather parameter values
|
---|
| 87 | int c = 0;
|
---|
| 88 | if (InverseLengthParameter.Value != null) {
|
---|
| 89 | inverseLength = InverseLengthParameter.Value.Value;
|
---|
| 90 | } else {
|
---|
| 91 | inverseLength = 1.0 / Math.Exp(p[c]);
|
---|
| 92 | c++;
|
---|
[8582] | 93 | }
|
---|
[8982] | 94 | if (PeriodParameter.Value != null) {
|
---|
| 95 | period = PeriodParameter.Value.Value;
|
---|
| 96 | } else {
|
---|
| 97 | period = Math.Exp(p[c]);
|
---|
| 98 | c++;
|
---|
[8582] | 99 | }
|
---|
[8982] | 100 | if (ScaleParameter.Value != null) {
|
---|
| 101 | scale = ScaleParameter.Value.Value;
|
---|
| 102 | } else {
|
---|
| 103 | scale = Math.Exp(2 * p[c]);
|
---|
| 104 | c++;
|
---|
[8582] | 105 | }
|
---|
[8982] | 106 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovariancePeriodic", "p");
|
---|
[8582] | 107 | }
|
---|
| 108 |
|
---|
[8982] | 109 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 110 | double inverseLength, period, scale;
|
---|
| 111 | GetParameterValues(p, out scale, out period, out inverseLength);
|
---|
| 112 | // create functions
|
---|
| 113 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 114 | cov.Covariance = (x, i, j) => {
|
---|
| 115 | double k = i == j ? 0.0 : GetDistance(x, x, i, j, columnIndices);
|
---|
| 116 | k = Math.PI * k / period;
|
---|
| 117 | k = Math.Sin(k) * inverseLength;
|
---|
| 118 | k = k * k;
|
---|
[8323] | 119 |
|
---|
[8982] | 120 | return scale * Math.Exp(-2.0 * k);
|
---|
| 121 | };
|
---|
| 122 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
| 123 | double k = GetDistance(x, xt, i, j, columnIndices);
|
---|
| 124 | k = Math.PI * k / period;
|
---|
| 125 | k = Math.Sin(k) * inverseLength;
|
---|
| 126 | k = k * k;
|
---|
| 127 |
|
---|
| 128 | return scale * Math.Exp(-2.0 * k);
|
---|
| 129 | };
|
---|
| 130 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, columnIndices, scale, period, inverseLength);
|
---|
| 131 | return cov;
|
---|
[8323] | 132 | }
|
---|
| 133 |
|
---|
[8982] | 134 |
|
---|
| 135 | private static IEnumerable<double> GetGradient(double[,] x, int i, int j, IEnumerable<int> columnIndices, double scale, double period, double inverseLength) {
|
---|
[9211] | 136 | double k = i == j ? 0.0 : Math.PI * GetDistance(x, x, i, j, columnIndices) / period;
|
---|
| 137 | double gradient = Math.Sin(k) * inverseLength;
|
---|
[8484] | 138 | gradient *= gradient;
|
---|
[8582] | 139 | yield return 4.0 * scale * Math.Exp(-2.0 * gradient) * gradient;
|
---|
[9211] | 140 | double r = Math.Sin(k) * inverseLength;
|
---|
| 141 | yield return 2.0 * k * scale * Math.Exp(-2 * r * r) *Math.Sin(2*k) * inverseLength * inverseLength;
|
---|
| 142 | yield return 2.0 * scale * Math.Exp(-2 * gradient);
|
---|
| 143 |
|
---|
[8484] | 144 | }
|
---|
| 145 |
|
---|
[8982] | 146 | private static double GetDistance(double[,] x, double[,] xt, int i, int j, IEnumerable<int> columnIndices) {
|
---|
[8678] | 147 | return Math.Sqrt(Util.SqrDist(x, i, xt, j, 1, columnIndices));
|
---|
[8323] | 148 | }
|
---|
| 149 | }
|
---|
| 150 | }
|
---|