[8464] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[8484] | 23 | using System.Collections.Generic;
|
---|
[8982] | 24 | using System.Linq;
|
---|
[8464] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8612] | 27 | using HeuristicLab.Data;
|
---|
[8982] | 28 | using HeuristicLab.Parameters;
|
---|
[8464] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item(Name = "CovarianceNoise",
|
---|
| 34 | Description = "Noise covariance function for Gaussian processes.")]
|
---|
[8612] | 35 | public sealed class CovarianceNoise : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 36 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
[8982] | 37 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
[8612] | 38 | }
|
---|
[8464] | 39 |
|
---|
| 40 | [StorableConstructor]
|
---|
[8612] | 41 | private CovarianceNoise(bool deserializing)
|
---|
[8464] | 42 | : base(deserializing) {
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[8612] | 45 | private CovarianceNoise(CovarianceNoise original, Cloner cloner)
|
---|
[8464] | 46 | : base(original, cloner) {
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | public CovarianceNoise()
|
---|
| 50 | : base() {
|
---|
[8612] | 51 | Name = ItemName;
|
---|
| 52 | Description = ItemDescription;
|
---|
| 53 |
|
---|
[8982] | 54 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale of noise."));
|
---|
[8464] | 55 | }
|
---|
| 56 |
|
---|
| 57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 58 | return new CovarianceNoise(this, cloner);
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[8982] | 61 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 62 | return ScaleParameter.Value != null ? 0 : 1;
|
---|
[8612] | 63 | }
|
---|
| 64 |
|
---|
[8982] | 65 | public void SetParameter(double[] p) {
|
---|
| 66 | double scale;
|
---|
| 67 | GetParameterValues(p, out scale);
|
---|
| 68 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
[8612] | 69 | }
|
---|
| 70 |
|
---|
[8982] | 71 | private void GetParameterValues(double[] p, out double scale) {
|
---|
| 72 | int c = 0;
|
---|
| 73 | // gather parameter values
|
---|
| 74 | if (ScaleParameter.Value != null) {
|
---|
| 75 | scale = ScaleParameter.Value.Value;
|
---|
[8612] | 76 | } else {
|
---|
[8982] | 77 | scale = Math.Exp(2 * p[c]);
|
---|
| 78 | c++;
|
---|
[8612] | 79 | }
|
---|
[8982] | 80 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceNoise", "p");
|
---|
[8464] | 81 | }
|
---|
| 82 |
|
---|
[8982] | 83 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 84 | double scale;
|
---|
| 85 | GetParameterValues(p, out scale);
|
---|
| 86 | // create functions
|
---|
| 87 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 88 | cov.Covariance = (x, i, j) => i == j ? scale : 0.0;
|
---|
| 89 | cov.CrossCovariance = (x, xt, i, j) => 0.0;
|
---|
| 90 | cov.CovarianceGradient = (x, i, j) => Enumerable.Repeat(i == j ? 2.0 * scale : 0.0, 1);
|
---|
| 91 | return cov;
|
---|
[8464] | 92 | }
|
---|
| 93 | }
|
---|
| 94 | }
|
---|