Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceNoise.cs @ 14853

Last change on this file since 14853 was 14185, checked in by swagner, 8 years ago

#2526: Updated year of copyrights in license headers

File size: 3.5 KB
RevLine 
[8464]1#region License Information
2/* HeuristicLab
[14185]3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[8464]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
[8612]25using HeuristicLab.Data;
[8982]26using HeuristicLab.Parameters;
[8464]27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Algorithms.DataAnalysis {
30  [StorableClass]
31  [Item(Name = "CovarianceNoise",
32    Description = "Noise covariance function for Gaussian processes.")]
[8612]33  public sealed class CovarianceNoise : ParameterizedNamedItem, ICovarianceFunction {
34    public IValueParameter<DoubleValue> ScaleParameter {
[8982]35      get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
[8612]36    }
[10489]37    private bool HasFixedScaleParameter {
38      get { return ScaleParameter.Value != null; }
39    }
[8464]40
41    [StorableConstructor]
[8612]42    private CovarianceNoise(bool deserializing)
[8464]43      : base(deserializing) {
44    }
45
[8612]46    private CovarianceNoise(CovarianceNoise original, Cloner cloner)
[8464]47      : base(original, cloner) {
48    }
49
50    public CovarianceNoise()
51      : base() {
[8612]52      Name = ItemName;
53      Description = ItemDescription;
54
[8982]55      Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale of noise."));
[8464]56    }
57
58    public override IDeepCloneable Clone(Cloner cloner) {
59      return new CovarianceNoise(this, cloner);
60    }
61
[8982]62    public int GetNumberOfParameters(int numberOfVariables) {
[10489]63      return HasFixedScaleParameter ? 0 : 1;
[8612]64    }
65
[8982]66    public void SetParameter(double[] p) {
67      double scale;
68      GetParameterValues(p, out scale);
69      ScaleParameter.Value = new DoubleValue(scale);
[8612]70    }
71
[8982]72    private void GetParameterValues(double[] p, out double scale) {
73      int c = 0;
74      // gather parameter values
[10489]75      if (HasFixedScaleParameter) {
[8982]76        scale = ScaleParameter.Value.Value;
[8612]77      } else {
[8982]78        scale = Math.Exp(2 * p[c]);
79        c++;
[8612]80      }
[8982]81      if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceNoise", "p");
[8464]82    }
83
[13721]84    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
[8982]85      double scale;
86      GetParameterValues(p, out scale);
[10489]87      var fixedScale = HasFixedScaleParameter;
[8982]88      // create functions
89      var cov = new ParameterizedCovarianceFunction();
90      cov.Covariance = (x, i, j) => i == j ? scale : 0.0;
[13721]91      cov.CrossCovariance = (x, xt, i, j) => Util.SqrDist(x, i, xt, j, columnIndices, 1.0) < 1e-9 ? scale : 0.0;
[10489]92      if (fixedScale)
[13784]93        cov.CovarianceGradient = (x, i, j) => new double[0];
[10489]94      else
[13784]95        cov.CovarianceGradient = (x, i, j) => new double[1] { i == j ? 2.0 * scale : 0.0 };
[8982]96      return cov;
[8464]97    }
98  }
99}
Note: See TracBrowser for help on using the repository browser.