Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/CovarianceFunctions/CovarianceMaternIso.cs @ 10306

Last change on this file since 10306 was 9456, checked in by swagner, 12 years ago

Updated copyright year and added some missing license headers (#1889)

File size: 6.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Algorithms.DataAnalysis {
32  [StorableClass]
33  [Item(Name = "CovarianceMaternIso",
34    Description = "Matern covariance function for Gaussian processes.")]
35  public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction {
36    public IValueParameter<DoubleValue> InverseLengthParameter {
37      get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
38    }
39
40    public IValueParameter<DoubleValue> ScaleParameter {
41      get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
42    }
43
44    public IConstrainedValueParameter<IntValue> DParameter {
45      get { return (IConstrainedValueParameter<IntValue>)Parameters["D"]; }
46    }
47
48
49    [StorableConstructor]
50    private CovarianceMaternIso(bool deserializing)
51      : base(deserializing) {
52    }
53
54    private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner)
55      : base(original, cloner) {
56    }
57
58    public CovarianceMaternIso()
59      : base() {
60      Name = ItemName;
61      Description = ItemDescription;
62
63      Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric Matern covariance function."));
64      Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the isometric Matern covariance function."));
65      var validDValues = new ItemSet<IntValue>();
66      validDValues.Add((IntValue)new IntValue(1).AsReadOnly());
67      validDValues.Add((IntValue)new IntValue(3).AsReadOnly());
68      validDValues.Add((IntValue)new IntValue(5).AsReadOnly());
69      Parameters.Add(new ConstrainedValueParameter<IntValue>("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First()));
70    }
71
72    public override IDeepCloneable Clone(Cloner cloner) {
73      return new CovarianceMaternIso(this, cloner);
74    }
75
76    public int GetNumberOfParameters(int numberOfVariables) {
77      return
78        (InverseLengthParameter.Value != null ? 0 : 1) +
79        (ScaleParameter.Value != null ? 0 : 1);
80    }
81
82    public void SetParameter(double[] p) {
83      double inverseLength, scale;
84      GetParameterValues(p, out scale, out inverseLength);
85      InverseLengthParameter.Value = new DoubleValue(inverseLength);
86      ScaleParameter.Value = new DoubleValue(scale);
87    }
88
89    private void GetParameterValues(double[] p, out double scale, out double inverseLength) {
90      // gather parameter values
91      int c = 0;
92      if (InverseLengthParameter.Value != null) {
93        inverseLength = InverseLengthParameter.Value.Value;
94      } else {
95        inverseLength = 1.0 / Math.Exp(p[c]);
96        c++;
97      }
98
99      if (ScaleParameter.Value != null) {
100        scale = ScaleParameter.Value.Value;
101      } else {
102        scale = Math.Exp(2 * p[c]);
103        c++;
104      }
105      if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "p");
106    }
107
108    public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
109      double inverseLength, scale;
110      int d = DParameter.Value.Value;
111      GetParameterValues(p, out scale, out inverseLength);
112      // create functions
113      var cov = new ParameterizedCovarianceFunction();
114      cov.Covariance = (x, i, j) => {
115        double dist = i == j
116                       ? 0.0
117                       : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
118        return scale * m(d, dist);
119      };
120      cov.CrossCovariance = (x, xt, i, j) => {
121        double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, Math.Sqrt(d) * inverseLength, columnIndices));
122        return scale * m(d, dist);
123      };
124      cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, d, scale, inverseLength, columnIndices);
125      return cov;
126    }
127
128    private static double m(int d, double t) {
129      double f;
130      switch (d) {
131        case 1: { f = 1; break; }
132        case 3: { f = 1 + t; break; }
133        case 5: { f = 1 + t * (1 + t / 3.0); break; }
134        default: throw new InvalidOperationException();
135      }
136      return f * Math.Exp(-t);
137    }
138
139    private static double dm(int d, double t) {
140      double df;
141      switch (d) {
142        case 1: { df = 1; break; }
143        case 3: { df = t; break; }
144        case 5: { df = t * (1 + t) / 3.0; break; }
145        default: throw new InvalidOperationException();
146      }
147      return df * t * Math.Exp(-t);
148    }
149
150
151    private static IEnumerable<double> GetGradient(double[,] x, int i, int j, int d, double scale, double inverseLength, IEnumerable<int> columnIndices) {
152      double dist = i == j
153                   ? 0.0
154                   : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
155
156      yield return scale * dm(d, dist);
157      yield return 2 * scale * m(d, dist);
158    }
159  }
160}
Note: See TracBrowser for help on using the repository browser.