[8562] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9456] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8562] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[8582] | 24 | using System.Linq;
|
---|
[8562] | 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[8582] | 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
[8562] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item(Name = "CovarianceMaternIso",
|
---|
| 34 | Description = "Matern covariance function for Gaussian processes.")]
|
---|
[8612] | 35 | public sealed class CovarianceMaternIso : ParameterizedNamedItem, ICovarianceFunction {
|
---|
[8582] | 36 | public IValueParameter<DoubleValue> InverseLengthParameter {
|
---|
[8982] | 37 | get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
|
---|
[8582] | 38 | }
|
---|
| 39 |
|
---|
[8612] | 40 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
[8982] | 41 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
[8612] | 42 | }
|
---|
[8582] | 43 |
|
---|
[8612] | 44 | public IConstrainedValueParameter<IntValue> DParameter {
|
---|
[8982] | 45 | get { return (IConstrainedValueParameter<IntValue>)Parameters["D"]; }
|
---|
[8612] | 46 | }
|
---|
[8562] | 47 |
|
---|
[8612] | 48 |
|
---|
[8562] | 49 | [StorableConstructor]
|
---|
[8612] | 50 | private CovarianceMaternIso(bool deserializing)
|
---|
[8562] | 51 | : base(deserializing) {
|
---|
| 52 | }
|
---|
| 53 |
|
---|
[8612] | 54 | private CovarianceMaternIso(CovarianceMaternIso original, Cloner cloner)
|
---|
[8562] | 55 | : base(original, cloner) {
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public CovarianceMaternIso()
|
---|
| 59 | : base() {
|
---|
[8612] | 60 | Name = ItemName;
|
---|
| 61 | Description = ItemDescription;
|
---|
| 62 |
|
---|
[8982] | 63 | Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric Matern covariance function."));
|
---|
| 64 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the isometric Matern covariance function."));
|
---|
[8582] | 65 | var validDValues = new ItemSet<IntValue>();
|
---|
| 66 | validDValues.Add((IntValue)new IntValue(1).AsReadOnly());
|
---|
| 67 | validDValues.Add((IntValue)new IntValue(3).AsReadOnly());
|
---|
| 68 | validDValues.Add((IntValue)new IntValue(5).AsReadOnly());
|
---|
[8982] | 69 | Parameters.Add(new ConstrainedValueParameter<IntValue>("D", "The d parameter (allowed values: 1, 3, or 5) of the isometric Matern covariance function.", validDValues, validDValues.First()));
|
---|
[8562] | 70 | }
|
---|
| 71 |
|
---|
| 72 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 73 | return new CovarianceMaternIso(this, cloner);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
[8612] | 76 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
[8582] | 77 | return
|
---|
[8982] | 78 | (InverseLengthParameter.Value != null ? 0 : 1) +
|
---|
| 79 | (ScaleParameter.Value != null ? 0 : 1);
|
---|
[8562] | 80 | }
|
---|
| 81 |
|
---|
[8982] | 82 | public void SetParameter(double[] p) {
|
---|
| 83 | double inverseLength, scale;
|
---|
| 84 | GetParameterValues(p, out scale, out inverseLength);
|
---|
| 85 | InverseLengthParameter.Value = new DoubleValue(inverseLength);
|
---|
| 86 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | private void GetParameterValues(double[] p, out double scale, out double inverseLength) {
|
---|
| 90 | // gather parameter values
|
---|
| 91 | int c = 0;
|
---|
| 92 | if (InverseLengthParameter.Value != null) {
|
---|
| 93 | inverseLength = InverseLengthParameter.Value.Value;
|
---|
| 94 | } else {
|
---|
| 95 | inverseLength = 1.0 / Math.Exp(p[c]);
|
---|
| 96 | c++;
|
---|
[8582] | 97 | }
|
---|
[8982] | 98 |
|
---|
| 99 | if (ScaleParameter.Value != null) {
|
---|
| 100 | scale = ScaleParameter.Value.Value;
|
---|
| 101 | } else {
|
---|
| 102 | scale = Math.Exp(2 * p[c]);
|
---|
| 103 | c++;
|
---|
[8582] | 104 | }
|
---|
[8982] | 105 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceMaternIso", "p");
|
---|
[8582] | 106 | }
|
---|
[8562] | 107 |
|
---|
[8982] | 108 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, IEnumerable<int> columnIndices) {
|
---|
| 109 | double inverseLength, scale;
|
---|
| 110 | int d = DParameter.Value.Value;
|
---|
| 111 | GetParameterValues(p, out scale, out inverseLength);
|
---|
| 112 | // create functions
|
---|
| 113 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 114 | cov.Covariance = (x, i, j) => {
|
---|
| 115 | double dist = i == j
|
---|
| 116 | ? 0.0
|
---|
| 117 | : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
|
---|
| 118 | return scale * m(d, dist);
|
---|
| 119 | };
|
---|
| 120 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
| 121 | double dist = Math.Sqrt(Util.SqrDist(x, i, xt, j, Math.Sqrt(d) * inverseLength, columnIndices));
|
---|
| 122 | return scale * m(d, dist);
|
---|
| 123 | };
|
---|
| 124 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, d, scale, inverseLength, columnIndices);
|
---|
| 125 | return cov;
|
---|
| 126 | }
|
---|
[8582] | 127 |
|
---|
[8982] | 128 | private static double m(int d, double t) {
|
---|
[8562] | 129 | double f;
|
---|
| 130 | switch (d) {
|
---|
| 131 | case 1: { f = 1; break; }
|
---|
| 132 | case 3: { f = 1 + t; break; }
|
---|
| 133 | case 5: { f = 1 + t * (1 + t / 3.0); break; }
|
---|
| 134 | default: throw new InvalidOperationException();
|
---|
| 135 | }
|
---|
| 136 | return f * Math.Exp(-t);
|
---|
| 137 | }
|
---|
| 138 |
|
---|
[8982] | 139 | private static double dm(int d, double t) {
|
---|
[8562] | 140 | double df;
|
---|
| 141 | switch (d) {
|
---|
| 142 | case 1: { df = 1; break; }
|
---|
| 143 | case 3: { df = t; break; }
|
---|
| 144 | case 5: { df = t * (1 + t) / 3.0; break; }
|
---|
| 145 | default: throw new InvalidOperationException();
|
---|
| 146 | }
|
---|
| 147 | return df * t * Math.Exp(-t);
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 |
|
---|
[8982] | 151 | private static IEnumerable<double> GetGradient(double[,] x, int i, int j, int d, double scale, double inverseLength, IEnumerable<int> columnIndices) {
|
---|
[8562] | 152 | double dist = i == j
|
---|
| 153 | ? 0.0
|
---|
[8678] | 154 | : Math.Sqrt(Util.SqrDist(x, i, j, Math.Sqrt(d) * inverseLength, columnIndices));
|
---|
[8562] | 155 |
|
---|
[8982] | 156 | yield return scale * dm(d, dist);
|
---|
| 157 | yield return 2 * scale * m(d, dist);
|
---|
[8562] | 158 | }
|
---|
| 159 | }
|
---|
| 160 | }
|
---|