1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | [Item(Name = "CovarianceMask",
|
---|
32 | Description = "Masking covariance function for dimension selection can be used to apply a covariance function only on certain input dimensions.")]
|
---|
33 | public sealed class CovarianceMask : ParameterizedNamedItem, ICovarianceFunction {
|
---|
34 | public IValueParameter<IntArray> SelectedDimensionsParameter {
|
---|
35 | get { return (IValueParameter<IntArray>)Parameters["SelectedDimensions"]; }
|
---|
36 | }
|
---|
37 | public IValueParameter<ICovarianceFunction> CovarianceFunctionParameter {
|
---|
38 | get { return (IValueParameter<ICovarianceFunction>)Parameters["CovarianceFunction"]; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | [StorableConstructor]
|
---|
42 | private CovarianceMask(bool deserializing)
|
---|
43 | : base(deserializing) {
|
---|
44 | }
|
---|
45 |
|
---|
46 | private CovarianceMask(CovarianceMask original, Cloner cloner)
|
---|
47 | : base(original, cloner) {
|
---|
48 | }
|
---|
49 |
|
---|
50 | public CovarianceMask()
|
---|
51 | : base() {
|
---|
52 | Name = ItemName;
|
---|
53 | Description = ItemDescription;
|
---|
54 |
|
---|
55 | Parameters.Add(new OptionalValueParameter<IntArray>("SelectedDimensions", "The dimensions on which the specified covariance function should be applied to."));
|
---|
56 | Parameters.Add(new ValueParameter<ICovarianceFunction>("CovarianceFunction", "The covariance function that should be scaled.", new CovarianceSquaredExponentialIso()));
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
60 | return new CovarianceMask(this, cloner);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
64 | if (SelectedDimensionsParameter.Value == null) return CovarianceFunctionParameter.Value.GetNumberOfParameters(numberOfVariables);
|
---|
65 | else return CovarianceFunctionParameter.Value.GetNumberOfParameters(SelectedDimensionsParameter.Value.Length);
|
---|
66 | }
|
---|
67 |
|
---|
68 | public void SetParameter(double[] p) {
|
---|
69 | CovarianceFunctionParameter.Value.SetParameter(p);
|
---|
70 | }
|
---|
71 |
|
---|
72 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
73 | var cov = CovarianceFunctionParameter.Value;
|
---|
74 | var selectedDimensions = SelectedDimensionsParameter.Value;
|
---|
75 |
|
---|
76 | return cov.GetParameterizedCovarianceFunction(p, selectedDimensions.Intersect(columnIndices).ToArray());
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|